Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure
Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which inductance is compensated by the stray capacitance. The vacuum section of the...
Gespeichert in:
| Datum: | 2008 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/111488 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure / V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash, G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 43-45. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-111488 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1114882025-02-09T18:19:31Z Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure Коаксіальний високочастотний ввід імпульсної потужності 3 МВт у прискорюючу структуру 176 МГц Коаксиальный высокочастотный ввод импульсной мощности 3 МВт в ускоряющую структуру 176 МГц Auslender, V.L. Chernov, K.N. Gornakov, I.V. Kazarezov, I.V. Makarov, I.G. Matyash, N.V. Ostreiko, G.N. Panfilov, A.D. Serdobintsev, G.V. Tarnetsky, V.V. Tiunov, M.A. Shachkov, V.E. Физика и техника ускорителей Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which inductance is compensated by the stray capacitance. The vacuum section of the power input is separated from the atmosphere by the cylindrical insulator made of 22XC ceramics. The coaxial part of the power input is divided into the 176 MHz quarter-wave-length insulator and quarter-wave-length transformer by the point of the 50 Ohm RF power feeder connection. Power input testing technique is described in the paper together with the results obtained when operating at the high power level. Наведено конструкцію вводу потужності, що являє собою низькоомну коаксіальну лінію з хвильовим опором порядку 30 Ом. Один кінець лінії закорочено, а інший переходить у петлю зв'язку, індуктивність якої компенсована конструктивною ємністю. Вакуумна частина вводу потужності відділена від атмосфери циліндричним ізолятором з кераміки 22ХС. Високочастотна потужність підводиться фідером до місця, що розділяє коаксіальну частину вводу на чвертьхвильовий ізолятор і чвертьхвильовий трансформатор на частоті 176 МГц. Хвильовий опір фідера, що підводить потужність, 50 Ом. Описано методику випробування вводу потужності на стенді, наведені результати його роботи на великому рівні потужності. Приведена конструкция ввода мощности. Он представляет собой низкоомную коаксиальную линию с волновым сопротивлением порядка 30 Ом. Один конец линии закорочен, а другой переходит в петлю связи, индуктивность которой компенсирована конструктивной емкостью. Вакуумная часть ввода мощности отделена от атмосферы цилиндрическим изолятором из керамики 22ХС. Высокочастотная мощность подводится фидером в месте, разделяющем коаксиальную часть ввода на четвертьволновый изолятор и четвертьволновый трансформатор на частоте 176 МГц. Волновое сопротивление подводящего мощность фидера 50 Ом. Описана методика испытания ввода мощности на стенде, приведены результаты его работы на большом уровне мощности. 2008 Article Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure / V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash, G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 43-45. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.17.-w; 84.40.-x https://nasplib.isofts.kiev.ua/handle/123456789/111488 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Физика и техника ускорителей Физика и техника ускорителей |
| spellingShingle |
Физика и техника ускорителей Физика и техника ускорителей Auslender, V.L. Chernov, K.N. Gornakov, I.V. Kazarezov, I.V. Makarov, I.G. Matyash, N.V. Ostreiko, G.N. Panfilov, A.D. Serdobintsev, G.V. Tarnetsky, V.V. Tiunov, M.A. Shachkov, V.E. Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure Вопросы атомной науки и техники |
| description |
Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which inductance is compensated by the stray capacitance. The vacuum section of the power input is separated from the atmosphere by the cylindrical insulator made of 22XC ceramics. The coaxial part of the power input is divided into the 176 MHz quarter-wave-length insulator and quarter-wave-length transformer by the point of the 50 Ohm RF power feeder connection. Power input testing technique is described in the paper together with the results obtained when operating at the high power level. |
| format |
Article |
| author |
Auslender, V.L. Chernov, K.N. Gornakov, I.V. Kazarezov, I.V. Makarov, I.G. Matyash, N.V. Ostreiko, G.N. Panfilov, A.D. Serdobintsev, G.V. Tarnetsky, V.V. Tiunov, M.A. Shachkov, V.E. |
| author_facet |
Auslender, V.L. Chernov, K.N. Gornakov, I.V. Kazarezov, I.V. Makarov, I.G. Matyash, N.V. Ostreiko, G.N. Panfilov, A.D. Serdobintsev, G.V. Tarnetsky, V.V. Tiunov, M.A. Shachkov, V.E. |
| author_sort |
Auslender, V.L. |
| title |
Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure |
| title_short |
Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure |
| title_full |
Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure |
| title_fullStr |
Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure |
| title_full_unstemmed |
Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure |
| title_sort |
coaxial pulsed 3 mw rf power input for 176 mhz accelerating structure |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2008 |
| topic_facet |
Физика и техника ускорителей |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/111488 |
| citation_txt |
Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure / V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash, G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 43-45. — Бібліогр.: 3 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT auslendervl coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT chernovkn coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT gornakoviv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT kazarezoviv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT makarovig coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT matyashnv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT ostreikogn coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT panfilovad coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT serdobintsevgv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT tarnetskyvv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT tiunovma coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT shachkovve coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure AT auslendervl koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT chernovkn koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT gornakoviv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT kazarezoviv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT makarovig koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT matyashnv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT ostreikogn koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT panfilovad koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT serdobintsevgv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT tarnetskyvv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT tiunovma koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT shachkovve koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc AT auslendervl koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT chernovkn koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT gornakoviv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT kazarezoviv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT makarovig koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT matyashnv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT ostreikogn koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT panfilovad koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT serdobintsevgv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT tarnetskyvv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT tiunovma koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc AT shachkovve koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc |
| first_indexed |
2025-11-29T13:09:33Z |
| last_indexed |
2025-11-29T13:09:33Z |
| _version_ |
1850130333822877696 |
| fulltext |
COAXIAL PULSED 3 MW RF POWER INPUT FOR 176 MHz
ACCELERATING STRUCTURE
V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash,
G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov
Budker INP, Novosibirsk, Russia
Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the
wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which in-
ductance is compensated by the stray capacitance. The vacuum section of the power input is separated from the at-
mosphere by the cylindrical insulator made of 22XC ceramics. The coaxial part of the power input is divided into
the 176 MHz quarter-wave-length insulator and quarter-wave-length transformer by the point of the 50 Ohm RF
power feeder connection. Power input testing technique is described in the paper together with the results obtained
when operating at the high power level.
PACS: 29.17.-w; 84.40.-x.
INTRODUCTION
176 MHz pulsed electron accelerator for 5 MeV
electron energy and average beam power of 300 kW [1]
is under construction at Budker INP. The commission-
ing work at the accelerator prototype is being carried
out [2]. 3 MW pulsed power source is required to pro-
vide efficient power transfer to the electron beam. At
operating frequency of 176 MHz, the power input de-
sign must be coaxial. In the accelerator prototype, the
RF source power is by order lower, so the power input
does not require blast cooling. It simplifies the power
input design. The ceramic insulator which separates the
accelerating structure vacuum volume from the atmo-
sphere should meet the requirements of breakdown
strength and heat load. Before installation into the accel-
erating structure, the power input was tested at the
stand. The paper presents the power input design and re-
sults of its testing at the stand and being installed into
the accelerator.
POWER INPUT DESIGN
The power input (see Fig.1) is made as low-resis-
tance coaxial line 5 with the following dimensions:
D=160 mm, d=100 mm. Wave impedance of that line is
close to the optimal value W=30 Ohm with minimal
surface electric field on the central conductor. One end
of the line is short-circuited, and the other turns into the
coupling loop 1. The loop inductance is compensated by
the stray capacitance. The vacuum section of the power
input is separated from the atmosphere by the cylindri-
cal insulator 2 with the following dimensions:
D=80 mm, d=70 mm, and h=60 mm. The insulator is
made of 22ХС ceramics (ε=9.3, tanδ=7∙10-4,
λ=13.4 W/m∙K). Mechanical decoupling of the ceramics
from the rigid coaxial is provided by the bellow 3. Also
the watercooling 6 is provided. The power input is in-
stalled at the central cavity of the accelerating structure.
Vacuum sealing is provided by 1 mm diameter indium
wire. RF power is transferred through the 50 Ohm feed-
er 4 to the place which divides coaxial input section into
the quarter-wavelength insulator and quarter-wave-
length transformer. General view of the power input is
shown in Fig.2.
Fig.1. Power input sketch
Fig.2. Power input general view
COMPUTER SIMULATION OF THE CE-
RAMIC-METAL UNIT OF THE POWER IN-
PUT
At the operating traveling wave mode, pulsed volt-
age in the feeder is 17.3 kV at power level P=3 MW.
Voltage on the insulator after quarter-wavelength
28 Ohm transformer is 9.8 kV in the matched regime.
Simulations of electric fields in the power input and
unit power were carried out with computer code Super-
LANS [3]. Simulation results show that electric field
strength does not exceed 10 kV/cm, power losses in the
insulator (at off-duty factor 7) is 10 W, temperature gra-
dient along the insulator is 5 K.
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5.
Series: Nuclear Physics Investigations (50), p.43-45.
43
POWER INPUT TESTS
Tests of the RF power input were carried out at the
stand consisted of the vacuum chamber and 180 MHz
RF generator (see Fig.3). The generator power is
P=2 kW at pulse duration of 100 µs, repetition rate of
1 kHz, off-duty factor of 10.
Fig.3. Power input workbench
Having the limited generator power at the stand, tests
were carried out in two stages with the use of coaxial cir-
cuit resonant behavior. At the first stage, the insulator
electric strength was tested. For that purpose, power input
coupling loop was removed and quarter-wavelength cir-
cuit with conductive coupling was organized. Fig.4
presents the first stage experimental setup scheme.
Fig.4. Quarter-wave circuit scheme
The circuit parameters are: quality factor of 1500,
characteristic impedance of 30 Ohm, shunt impedance
of 45 kOhm. At generator power of 2 kW, the insulator
voltage is 13.4 kV, what is 30% higher the rated value
in traveling wave mode.
Before the tests, vacuum in the chamber was at
8∙10-9 Torr level, and then it dropped down to 10-6 Torr
at RF power supply turned on. After that, vacuum rapid-
ly reached the stable level of 1.6∙10-8 Torr. So, the multi-
pactor zone at 13.4 kV voltage was passed at the ex-
pense of high rate of pulse rise. Multipactor appears at
pulse fronts, it may be seen from the fact that short-term
switching the generator into CW regime leads to vacu-
um improving up to 10-8 Torr in spite of increase of RF
voltage existing time by order. At lowered RF power
level, multipactor burns at the major part of the pulse
front and then passes to the pulse itself. Vacuum sharply
drops. Two-day-long conditioning resulted in decreas-
ing by order the voltage level of multipactor appearing.
At total power of 2 kW, the vacuum level was stabilized
at 10-8 Torr level.
At the second stage of tests, the power input with the
coupling loop was transformed into three-quarter-wave
circuit (see Fig.5). In that case, the insulator is placed
into the voltage minimum of the standing wave. Capaci-
tive coupling with the circuit takes place at the feeder
connection area.
Fig.5. Three-quarter-wave circuit scheme
Three-quarter-wave circuit parameters are: quality
factor of 2000, characteristic impedance of 14 Ohm,
shunt impedance of 28 kOhm. At generator power of
2 kW, the maximal voltage in the power input is
10.6 kV, what is lower then the rated value in traveling
wave mode (17.3 kV) by a factor of 1.5.
Before the tests, vacuum in the chamber was at
1.6∙10-9 Torr level, and then at 2 kW RF power supply
turned on the multipactor was observed during the pulse
and vacuum dropped down to 10-6 Torr. Vacuum degra-
dation may be activated by decreasing the RF power
level. In that case, multipactor zone cannot be passed
because of decreasing of the rate of pulse rise of RF
voltage. After two hours of conditioning, by multipactor
at the worst vacuum level at lowered RF power, the full
RF power was supplied, and vacuum was improved up
to 2∙10-8 Torr with no multipactor during the pulse.
Two-day-long conditioning with step-by-step de-
creasing of the RF power level allowed us to obtain
1.6∙10-8 Torr vacuum.
Oscillograms on Fig.6 represent pulses of incident
(1) and reflected (2) waves in the feeder together with
the cavity voltage (3) during power input conditioning.
1) 2) 3)
Fig.6. Power input conditioning oscillograms.
1) incident wave; 2) reflected wave (lower beam corresponds to a normal duty, upper beam –
to the multipactor); 3) cavity voltage (upper beam – normal duty, lower beam – multipactor)
44
At present, the power input is installed into the ac-
celerating structure (see Fig.7) after successful condi-
tioning. VSWR of 3.3 has been adjusted by turning the
coupling loop. 2.5 MW of power is transmitted through
the power input into the accelerating structure at accel-
eration of 350 mA beam current up to 5 MeV. VSWR is
measured with the directional coupler installed in the
feeder section between the generator and accelerating
structure.
Fig.7. Power input installed into the accelerating structure
CONCLUSIONS
The tests carried out at the stand proved serviceabili-
ty of the power input for the accelerating structure. Con-
ditioning carried out allowed us to pass the multipactor
zone at operating power level. Vacuum in the power in-
put was improved as a result of multipactor appearance
level drop. Discharges along the insulator were not ob-
served at voltage by 30% higher then design level in
traveling wave regime in the feeder. At short-term
switching on of the stand generator in CW mode, the in-
sulator was not damaged by thermal load. Power input
operation was tested at the accelerator in 2.5 MW of
power transfer operating regime.
REFERENCES
1. V.L. Auslender, et al. 5 MeV 300 kW electron
accelerator project // Problems of Atomic Science
and Technology. Series “Nuclear Physics
Investigations” (43). 2004, №2, p.6-8.
2. V.L. Auslender, et al. Work status of 5 MeV
300 kW electron accelerator // Problems of Atomic
Science and Technology. Series “Nuclear Physics
Investigations” (47). 2006, №3, p.3-5.
3. D.G. Myakishev and V.P. Yakovlev. An interactive
code superlans for evaluation of rf-cavities and
accelerating structures // IEEE particle
accelerrator conf. Rec. 1991, v.5, p.3002-3004.
Статья поступила в редакцию 06.09.2007 г.
КОАКСИАЛЬНЫЙ ВЫСОКОЧАСТОТНЫЙ ВВОД ИМПУЛЬСНОЙ МОЩНОСТИ 3 МВт В
УСКОРЯЮЩУЮ СТРУКТУРУ 176 МГц
В.Л. Ауслендер, К.Н. Чернов, И.В. Горнаков, И.В. Казарезов, И.Г. Макаров, Н.В. Матяш,
Г.Н. Острейко, А.Д. Панфилов, Г.В. Сердобинцев, В.В. Тарнецкий, М.А. Тиунов, В.Е. Шачков
Приведена конструкция ввода мощности. Он представляет собой низкоомную коаксиальную линию с
волновым сопротивлением порядка 30 Ом. Один конец линии закорочен, а другой – переходит в петлю свя-
зи, индуктивность которой компенсирована конструктивной емкостью. Вакуумная часть ввода мощности
отделена от атмосферы цилиндрическим изолятором из керамики 22ХС. Высокочастотная мощность подво-
дится фидером в месте, разделяющем коаксиальную часть ввода на четвертьволновый изолятор и чет-
вертьволновый трансформатор на частоте 176 МГц. Волновое сопротивление подводящего мощность фиде-
ра 50 Ом. Описана методика испытания ввода мощности на стенде, приведены результаты его работы на
большом уровне мощности.
КОАКСІАЛЬНИЙ ВИСОКОЧАСТОТНИЙ ВВІД ІМПУЛЬСНОЇ ПОТУЖНОСТІ 3 МВт
У ПРИСКОРЮЮЧУ СТРУКТУРУ 176 МГц
В.Л. Ауслендер, К.Н. Чернов, І.В. Горнаков, І.В. Казарезов, І.Г. Макаров, Н.В. Матяш,
Г.Н. Острейко, А.Д. Панфілов, Г.В. Сердобінцев, В.В. Тарнецький, М.А. Тіунов, В.Є. Шачков
Наведено конструкцію вводу потужності, що являє собою низькоомну коаксіальну лінію з хвильовим
опором порядку 30 Ом. Один кінець лінії закорочено, а інший – переходить у петлю зв'язку, індуктивність
якої компенсована конструктивною ємністю. Вакуумна частина вводу потужності відділена від атмосфери
циліндричним ізолятором з кераміки 22ХС. Високочастотна потужність підводиться фідером до місця, що
розділяє коаксіальну частину вводу на чвертьхвильовий ізолятор і чвертьхвильовий трансформатор на
частоті 176 МГц. Хвильовий опір фідера, що підводить потужність, 50 Ом. Описано методику випробування
вводу потужності на стенді, наведені результати його роботи на великому рівні потужності.
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5.
Series: Nuclear Physics Investigations (50), p.43-45.
45
|