Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures

Application of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures is described. The description of realization of algorithm of search of images' defects by the means of technology CUDA (Compute Unified Device Architecture - the unified hardware-soft...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Dudnik, V.A., Kudryavtsev, V.I., Sereda, T.M., Us, S.A., Shestakov, M.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/111837
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures / V.A. Dudnik, V.I. Kudryavtsev, T.M. Sereda, S.A. Us, M.V. Shestakov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 282-284. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111837
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1118372025-02-09T20:52:08Z Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures Використання засобiв GPGPU для розробки програм пошуку дефектiв монохромних пiвтонових зображень Использование средств GPGPU для разработки программ поиска дефектов монохромных полутоновых изображений Dudnik, V.A. Kudryavtsev, V.I. Sereda, T.M. Us, S.A. Shestakov, M.V. Вычислительные и модельные системы Application of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures is described. The description of realization of algorithm of search of images' defects by the means of technology CUDA (Compute Unified Device Architecture - the unified hardware-software decision for parallel calculations on GPU) companies NVIDIA is resulted. It is done the comparison of the temporary characteristics of performance of images' updating without application GPU and with use of opportunities of graphic processor GeForce 8800. Описано застосування засобiв GPGPU для розробки програм пошуку дефектiв монохромних пiвтонових зображень. Приведено опис реалiзацiї алгоритму пошуку дефектiв зображень засобами технологiї CUDA (Compute Unified Device Architecture – унiфiкованого програмно-апаратного рiшення для паралельних обчислень на GPU) компанiї NVIDIA. Прведено порiвняння тимчасових характеристик виконання коректування зображень без застосування GPU i з використанням можливостей графiчного процесора GeForce 8800. Описано применение средств GPGPU для разработки программ поиска дефектов монохромных полутоновых изображений. Приведено описание реализации алгоритма поиска дефектов изображений средствами технологии CUDA (Compute Unified Device Architecture – унифицированного программно- аппаратного решения для параллельных вычислений на GPU) компании NVIDIA. Проведено сравнение временных характеристик выполнения корректировки изображений без применения GPU и с использованием возможностей графического процессора GeForce 8800. 2013 Article Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures / V.A. Dudnik, V.I. Kudryavtsev, T.M. Sereda, S.A. Us, M.V. Shestakov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 282-284. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 89.80.+h, 89.70.+c, 01.10.Hx https://nasplib.isofts.kiev.ua/handle/123456789/111837 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Вычислительные и модельные системы
Вычислительные и модельные системы
spellingShingle Вычислительные и модельные системы
Вычислительные и модельные системы
Dudnik, V.A.
Kudryavtsev, V.I.
Sereda, T.M.
Us, S.A.
Shestakov, M.V.
Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures
Вопросы атомной науки и техники
description Application of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures is described. The description of realization of algorithm of search of images' defects by the means of technology CUDA (Compute Unified Device Architecture - the unified hardware-software decision for parallel calculations on GPU) companies NVIDIA is resulted. It is done the comparison of the temporary characteristics of performance of images' updating without application GPU and with use of opportunities of graphic processor GeForce 8800.
format Article
author Dudnik, V.A.
Kudryavtsev, V.I.
Sereda, T.M.
Us, S.A.
Shestakov, M.V.
author_facet Dudnik, V.A.
Kudryavtsev, V.I.
Sereda, T.M.
Us, S.A.
Shestakov, M.V.
author_sort Dudnik, V.A.
title Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures
title_short Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures
title_full Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures
title_fullStr Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures
title_full_unstemmed Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures
title_sort use of a gpgpu means for the development of search programs of defects of monochrome half-tone pictures
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Вычислительные и модельные системы
url https://nasplib.isofts.kiev.ua/handle/123456789/111837
citation_txt Use of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures / V.A. Dudnik, V.I. Kudryavtsev, T.M. Sereda, S.A. Us, M.V. Shestakov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 282-284. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dudnikva useofagpgpumeansforthedevelopmentofsearchprogramsofdefectsofmonochromehalftonepictures
AT kudryavtsevvi useofagpgpumeansforthedevelopmentofsearchprogramsofdefectsofmonochromehalftonepictures
AT seredatm useofagpgpumeansforthedevelopmentofsearchprogramsofdefectsofmonochromehalftonepictures
AT ussa useofagpgpumeansforthedevelopmentofsearchprogramsofdefectsofmonochromehalftonepictures
AT shestakovmv useofagpgpumeansforthedevelopmentofsearchprogramsofdefectsofmonochromehalftonepictures
AT dudnikva vikoristannâzasobivgpgpudlârozrobkiprogrampošukudefektivmonohromnihpivtonovihzobraženʹ
AT kudryavtsevvi vikoristannâzasobivgpgpudlârozrobkiprogrampošukudefektivmonohromnihpivtonovihzobraženʹ
AT seredatm vikoristannâzasobivgpgpudlârozrobkiprogrampošukudefektivmonohromnihpivtonovihzobraženʹ
AT ussa vikoristannâzasobivgpgpudlârozrobkiprogrampošukudefektivmonohromnihpivtonovihzobraženʹ
AT shestakovmv vikoristannâzasobivgpgpudlârozrobkiprogrampošukudefektivmonohromnihpivtonovihzobraženʹ
AT dudnikva ispolʹzovaniesredstvgpgpudlârazrabotkiprogrammpoiskadefektovmonohromnyhpolutonovyhizobraženii
AT kudryavtsevvi ispolʹzovaniesredstvgpgpudlârazrabotkiprogrammpoiskadefektovmonohromnyhpolutonovyhizobraženii
AT seredatm ispolʹzovaniesredstvgpgpudlârazrabotkiprogrammpoiskadefektovmonohromnyhpolutonovyhizobraženii
AT ussa ispolʹzovaniesredstvgpgpudlârazrabotkiprogrammpoiskadefektovmonohromnyhpolutonovyhizobraženii
AT shestakovmv ispolʹzovaniesredstvgpgpudlârazrabotkiprogrammpoiskadefektovmonohromnyhpolutonovyhizobraženii
first_indexed 2025-11-30T16:01:20Z
last_indexed 2025-11-30T16:01:20Z
_version_ 1850231736000053248
fulltext COMPUTING AND MODELLING SYSTEMS USE OF A GPGPU MEANS FOR THE DEVELOPMENT OF SEARCH PROGRAMS OF DEFECTS OF MONOCHROME HALF-TONE PICTURES V.A.Dudnik,∗V.I.Kudryavtsev, T.M.Sereda, S.A.Us, M.V.Shestakov National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received January 16, 2012) Application of a GPGPU means for the development of search programs of defects of monochrome half-tone pictures is described. The description of realization of algorithm of search of images’ defects by the means of technology CUDA (Compute Unified Device Architecture - the unified hardware-software decision for parallel calculations on GPU) companies NVIDIA is resulted. It is done the comparison of the temporary characteristics of performance of images’ updating without application GPU and with use of opportunities of graphic processor GeForce 8800. PACS: 89.80.+h, 89.70.+c, 01.10.Hx 1. INTRODUCTION Monochrome images are turned out as a result of processing the data given by the sensor controls used for medicine, flaw detection, special cartography and etc. In this case the image is turned out on an output of X-ray camera used for the control of temperature parameters in the chamber of a high pressure press. Prominent feature of such images is presence of spe- cific defects which are very bright points. Fig.1. A fragment of the original image with defects Such defects are a result from hitting of the absent- minded quantum of X-ray radiation directly on a ma- trix of the sensor control. In this case because of rather bigger size of the camera the voltage on the anode of a used source of radiation reaches 250 kilo- volt. It leads to the occurrence of rather big quantity of quantum of the absent-minded radiation. Within the analysis of similar images it is necessary the ap- plication of the programs-filters removing the similar defects. It slows down the formation of images essen- tially (in several times). Acceleration of processing is necessary for improvement of the analysis of such images. Basic time when setting up of a window of visibility is occupied by the filtration of images. It is necessary for removing of such defects. 2. IMAGE FILTERING Filters are based on the operation of convolution [1,3,4]. An operation of calculation of a new value of the chosen pixel is applied for the image of convolu- tion. It considers the values of the pixels surrounding it. For this case the matrix (a kernel of convolution) by the size 3× 3 is used: P(i-1,j-1) P(i,j-1) P(i+1,j-1) P(i-1,j) P(i,j) P(i+1,j) P(i-1,j+1) P(i,j+1) P(i+1,j+1) If we apply convolution to each pixel of the image the certain effect is turned out which depends on the chosen kernel of convolution. Generally there are two types of the filters on usage of pixels’ values: recur- sive and non- recursive. In recursive filters the val- ues calculated on the previous step are used for the calculation of the subsequent pixels’ values. In non- recursive filters for calculations it is always used the original pixels’ values. It is necessary to note that it is rather difficult to do paralleling of calculation for the recursive filters. It is impossible for CUDA. That is why the application of such filters is not considered here. 3. MEDIAN FILTER For the filtration of impulsive disturbances (in this case they are bright points) median filters are usu- ally used. It is one of a kind of digital filters which ∗Corresponding author. E-mail address: dudnik@mail.ru 282 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.282-284. is widely used in digital processing of signals and im- ages for the reduction of the noise level. It is based on finding of a median which is an average element of sequence. For this the value of readout inside of the window of the filter are sorted in ascending order (decrease). The value which is in the middle of the or- dered list comes to the output of the filter. The win- dow moves along filtered signal and calculations are repeated. In this way very bright values of elements of the image are eliminated and replaced by the values of similar magnitudes of brightness of the next elements. Fig.2. A fragment of the filtered image with the removed defects Use of the graphic accelerators as a fast calculators allows to accelerate processing of the half-tone pic- tures which have size more of 10 000 elements. Re- alization of the programs of images processing in the form of DLL is recommended. It allows to use them for the various program’s platforms. The gap in pro- ductivity between GPU and CPU is sharply reduced (it is approximately proportional to a quantity of ker- nels) with the usage of the multinuclear (2?6 kernels) processors and increasing of calculations’ complexity for paralleling processes. 4. PROGRAM REALIZATION OF ALGORITHM The algorithm has been realized by the means of system engineering CUDA in the form of Windows DLL. It provided a convenient reference to it from the programs created by the means of various soft- ware (for example: MS Visual Studio and Borland C ++ Builder). Moving of the data processing image to the GPU device is done during the reference to the program of filtration. Processing of the received data by the means of median filter and returning of the filtered image to the specified area of computer’s memory is also carried out [2,5]. Below the fragment of the code which is carrying out described above op- eration is resulted: #include <stdio.h> #include <stdio.h> #include <assert.h> #include <assert.h> #include <cuda.h> #include <cuda.h> int main(void) int main(void) { // pointers to host memory float *a_h, *b_h; float *a_h, *b_h; float *a_d, *b_d; // pointers to device memory float *a_d, *b_d; int i; int i; // allocate arrays on host a_h = (float *)malloc(sizeof(float)*N); a_h = (float *)malloc(sizeof(float)*N); b_h = (float *)malloc(sizeof(float)*N); b_h = (float *)malloc(sizeof(float)*N); // allocate arrays on device cudaMalloc((void **) &a_d, sizeof(float)*N); cudaMalloc((void **) &a_d, sizeof(float)*N); cudaMalloc((void **) &b_d, sizeof(float)*N); cudaMalloc((void **) &b_d, sizeof(float)*N); // send data from host to device: a_h to a_d cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice); cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice); // copy data within device: a_d to b_d cudaMemcpy(b_d, a_d, sizeof(float)*N, cudaMemcpyDeviceToDevice); cudaMemcpy(b_d, a_d, sizeof(float)*N, cudaMemcpyDeviceToDevice); // Delete defects MedianFilter(b_d); // retrieve data from device: b_d to b_h cudaMemcpy(b_h, b_d, sizeof(float)*N, cudaMemcpyDeviceToHost); cudaMemcpy(b_h, b_d, sizeof(float)*N, cudaMemcpyDeviceToHost); 283 It is necessary to note that an overhead charge for the transfer and returning of a file of processing data, start of the process of processing occupy an es- sential part of the general operating time of the pro- gram. That is why an essential gain in time starts to be shown within the size of processing files of 20 thousand of elements and more. In this case the same algorithm has been realized with the help of the base means of parallel processing which is avail- able within Windows. The comparison analysis of programs’ work speed has shown that the usage of modern multinuclear processors with general purpose allows making a break in speed of processing unim- pressive (2/5 times in comparison with 10/20 for the one-nuclear processor). On the other hand it has been noted by us that the increase in processing speed rather sharp decreases within increasing the quantity of kernels more than seven. (From our point of view it is due to increasing the overhead charge of Win- dows system for the management of quantization of time and switching of the processes, and as due to in- terference of the data in the buffer of the processor). 5. CONCLUSIONS Use of the graphic accelerators as a fast calculators allows to accelerate processing of the half-tone pic- tures which have size more of 10 000 elements. Re- alization of the programs of images processing in the form of DLL is recommended. It allows to use them for the various program’s platforms. The gap in pro- ductivity between GPU and CPU is sharply reduced (it is approximately proportional to a quantity of ker- nels) with the usage of the multinuclear (2?6 kernels) processors and increasing of calculations’ complexity for paralleling processes. References 1. William K. Pratt. Digital Image Processing 3-rd Edition. On 2011. Wiley-Interscience; 2 edition (April 1991). 2. Aleksej Berillo. (NVIDIA CUDA) Non graphic calculation on graphic processors. http://www.ixbt.com/video3/cuda-1.shtml 3. Kenneth R. Castleman. Digital Image Process- ing. Prentice Hall; 2nd edition (September 2, 1995). 4. Geoff Dougherty. Digital Image Processing for Medical Applications. Cambridge University Press; 1 edition (May 11, 2009). 5. Federico Dal Castello. Advanced System Tech- nology. STMicroelectronics, Italy Douglas Miles, The Portland Group: Parallel Ran- dom Number Generation Using OpenMP, OpenCL and PGI Accelerator Directives. http://www.pgroup.com/lit/articles/insider/ v2n2a4.htm 6. Don Breazeal,Craig Toepfer: Tuning Ap- plication Performance Using Hardware Event Counters in the PGPROF Profiler http://www.pgroup.com/lit/articles/insider/ v2n4a3.htm en-us/File/ larrabee-”manycore.pdf” ИСПОЛЬЗОВАНИЕ СРЕДСТВ GPGPU ДЛЯ РАЗРАБОТКИ ПРОГРАММ ПОИСКА ДЕФЕКТОВ МОНОХРОМНЫХ ПОЛУТОНОВЫХ ИЗОБРАЖЕНИЙ В.А.Дудник, В.И.Кудрявцев, Т.М.Середа, С.А.Ус, М.В.Шестаков Описано применение средств GPGPU для разработки программ поиска дефектов монохромных по- лутоновых изображений. Приведено описание реализации алгоритма поиска дефектов изображений средствами технологии CUDA (Compute Unified Device Architecture – унифицированного программно- аппаратного решения для параллельных вычислений на GPU) компании NVIDIA. Проведено сравнение временных характеристик выполнения корректировки изображений без применения GPU и с исполь- зованием возможностей графического процессора GeForce 8800. ВИКОРИСТАННЯ ЗАСОБIВ GPGPU ДЛЯ РОЗРОБКИ ПРОГРАМ ПОШУКУ ДЕФЕКТIВ МОНОХРОМНИХ ПIВТОНОВИХ ЗОБРАЖЕНЬ В.О.Дуднiк, В.I.Кудрявцев, Т.М.Середа, С.О.Ус, М.В.Шестаков Описано застосування засобiв GPGPU для розробки програм пошуку дефектiв монохромних пiвто- нових зображень. Приведено опис реалiзацiї алгоритму пошуку дефектiв зображень засобами техно- логiї CUDA (Compute Unified Device Architecture – унiфiкованого програмно-апаратного рiшення для паралельних обчислень на GPU) компанiї NVIDIA. Прведено порiвняння тимчасових характеристик виконання коректування зображень без застосування GPU i з використанням можливостей графiчного процесора GeForce 8800. 284