Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
The method of measurement and automated test probe station for the study of the temperature dependence of the leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution and leakage current of PSD with different initial (at room temperature)...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/111839 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Temperature dependence of the energy resolution and leakage current of the planar silicone detectors / O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika, G.P. Vasilyev, V.K. Voloshyn, V.I. Yalovenko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 253-258. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-111839 |
|---|---|
| record_format |
dspace |
| spelling |
Deiev, O.S. Maslov, N.I. Ovchinnik, V.D. Potin, S.M. Shulika, M.Y. Vasilyev, G.P. Voloshyn, V.K. Yalovenko, V.I. 2017-01-15T10:57:15Z 2017-01-15T10:57:15Z 2013 Temperature dependence of the energy resolution and leakage current of the planar silicone detectors / O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika, G.P. Vasilyev, V.K. Voloshyn, V.I. Yalovenko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 253-258. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 29.40.Wk https://nasplib.isofts.kiev.ua/handle/123456789/111839 The method of measurement and automated test probe station for the study of the temperature dependence of the leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution and leakage current of PSD with different initial (at room temperature) energy resolution in the temperature range from -30° C to 60° C was measured. Method allows to make the PSD selection for the detector systems with the possibility of use at elevated temperatures. Розроблена методика вимiрювань i створенi автоматизованi стенди для дослiдження температурної залежностi струмiв витоку та енергетичної роздiльної здатностi одноканальных планарних кремнiєвих детекторiв (ПКД). В дiапазонi температур −30° C до +60° C проведено вимiрювання енергетичної роздiльної здатностi та струмiв витоку ПКД з рiзними початковими (при кiмнатнiй температурi) енергетичними роздiльними здатностями. Методика дозволяє проводити вiдбiр ПКД для детектуючих систем, працюючих при пiдвищених температурах. Разработана методика измерений и созданы автоматизированные стенды для исследования температурной зависимости энергетического разрешения и токов утечки одноканальных планарных кремниевых детекторов (ПКД). В диапазоне температур −30° C до +60° C проведено измерение энергетического разрешения и токов утечки ПКД с различным начальным (при комнатной температуре) энергетическим разрешением. Методика позволяет производить отбор ПКД для детектирующих систем, работающих при повышенных температурах. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Ядернo-физические методы и обработка данных Temperature dependence of the energy resolution and leakage current of the planar silicone detectors Температурна залежнiсть енергетичної роздiльної здатностi та струмiв витоку планарних Si детекторiв Температурная зависимость энергетического разрешения и токов утечки планарных Si детекторов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors |
| spellingShingle |
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors Deiev, O.S. Maslov, N.I. Ovchinnik, V.D. Potin, S.M. Shulika, M.Y. Vasilyev, G.P. Voloshyn, V.K. Yalovenko, V.I. Ядернo-физические методы и обработка данных |
| title_short |
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors |
| title_full |
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors |
| title_fullStr |
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors |
| title_full_unstemmed |
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors |
| title_sort |
temperature dependence of the energy resolution and leakage current of the planar silicone detectors |
| author |
Deiev, O.S. Maslov, N.I. Ovchinnik, V.D. Potin, S.M. Shulika, M.Y. Vasilyev, G.P. Voloshyn, V.K. Yalovenko, V.I. |
| author_facet |
Deiev, O.S. Maslov, N.I. Ovchinnik, V.D. Potin, S.M. Shulika, M.Y. Vasilyev, G.P. Voloshyn, V.K. Yalovenko, V.I. |
| topic |
Ядернo-физические методы и обработка данных |
| topic_facet |
Ядернo-физические методы и обработка данных |
| publishDate |
2013 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Температурна залежнiсть енергетичної роздiльної здатностi та струмiв витоку планарних Si детекторiв Температурная зависимость энергетического разрешения и токов утечки планарных Si детекторов |
| description |
The method of measurement and automated test probe station for the study of the temperature dependence of the leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution and leakage current of PSD with different initial (at room temperature) energy resolution in the temperature range from -30° C to 60° C was measured. Method allows to make the PSD selection for the detector systems with the possibility of use at elevated temperatures.
Розроблена методика вимiрювань i створенi автоматизованi стенди для дослiдження температурної залежностi струмiв витоку та енергетичної роздiльної здатностi одноканальных планарних кремнiєвих детекторiв (ПКД). В дiапазонi температур −30° C до +60° C проведено вимiрювання енергетичної роздiльної здатностi та струмiв витоку ПКД з рiзними початковими (при кiмнатнiй температурi) енергетичними роздiльними здатностями. Методика дозволяє проводити вiдбiр ПКД для детектуючих систем, працюючих при пiдвищених температурах.
Разработана методика измерений и созданы автоматизированные стенды для исследования температурной зависимости энергетического разрешения и токов утечки одноканальных планарных кремниевых детекторов (ПКД). В диапазоне температур −30° C до +60° C проведено измерение энергетического разрешения и токов утечки ПКД с различным начальным (при комнатной температуре) энергетическим разрешением. Методика позволяет производить отбор ПКД для детектирующих систем, работающих при повышенных температурах.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/111839 |
| citation_txt |
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors / O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika, G.P. Vasilyev, V.K. Voloshyn, V.I. Yalovenko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 253-258. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT deievos temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT maslovni temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT ovchinnikvd temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT potinsm temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT shulikamy temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT vasilyevgp temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT voloshynvk temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT yalovenkovi temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors AT deievos temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT maslovni temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT ovchinnikvd temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT potinsm temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT shulikamy temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT vasilyevgp temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT voloshynvk temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT yalovenkovi temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv AT deievos temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov AT maslovni temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov AT ovchinnikvd temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov AT potinsm temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov AT shulikamy temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov AT vasilyevgp temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov AT voloshynvk temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov AT yalovenkovi temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov |
| first_indexed |
2025-11-25T22:20:29Z |
| last_indexed |
2025-11-25T22:20:29Z |
| _version_ |
1850563025189208064 |
| fulltext |
TEMPERATURE DEPENDENCE OF THE ENERGY
RESOLUTION AND LEAKAGE CURRENT
OF THE PLANAR SILICONE DETECTORS
O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika,
G.P. Vasilyev, V.K. Voloshyn ∗, V.I. Yalovenko
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received March 29, 2013)
The method of measurement and automated test probe station for the study of the temperature dependence of the
leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution
and leakage current of PSD with different initial (at room temperature) energy resolution in the temperature range
from −30◦ C to 60◦ C was measured. Method allows to make the PSD selection for the detector systems with the
possibility of use at elevated temperatures.
PACS: 29.40.Wk
1. INTRODUCTION
Detecting systems based on planar silicon detectors
(PSD) are now widely used in spectrometric sys-
tems of high energy physics, nuclear physics studies
and for various applications [1, 2]. In order to use
the PSD in a wide temperature range this is neces-
sary to know the temperature dependence of the sta-
tic and dynamic characteristics, and above all, the
current-voltage characteristics and the energy resolu-
tion [3, 4].
Temperature may significantly affect on the leak-
age current of the detector, because the tempera-
ture of detector material changes the probability of
generation-recombination processes in the bulk semi-
conductor detector material and in the detector sur-
face layers. Leakage current for the planar silicon
detector is
I =
qniWA
2τ
(1)
where q - electron charge, W - the thickness of detec-
tor depleted layer, A - the active area of the detec-
tor, ni -intrinsic concentration of charge carriers in
a semiconductor detector material, τ - the effective
lifetime of nonequilibrium charge carriers [5].
The energy resolution of PSD is largely deter-
mined by a detector leakage current. Full energy res-
olution spectrometer developed on the basis of planar
silicon detectors is defined as the processes occurring
in the detector and electronics noise.
The goal of this study is to investigate the tem-
perature dependence of detector leakage current and
the energy resolution of the PSD with different initial
(at room temperature) energy resolutions. A pream-
plifier with resistive feedback was used for measuring
the energy resolution.
Custom probe stations and methods of measure-
ment were developed for the investigations of the
temperature dependence of the silicon single-channel
detectors static and the spectral characteristics. A
number of measurements of the energy resolution and
leakage current for the detectors with different values
of these characteristics were carried under room tem-
perature.
2. PROBE STATION FOR
INVESTIGATION OF THE
TEMPERATURE DEPENDENCE OF THE
PSD ENERGY RESOLUTION AND
LEAKAGE CURRENT
An automated multi-channel probe station provides
a measurement of static and spectral characteristics
of the PSD and the single-channel probe station for
investigating the temperature dependence of leakage
current of the PSD less than 1 nA. Probe stations
allow measurements of the spectra radiation and leak-
age current PSD at a controlled temperature in the
range from -30 ◦C to +60 ◦C.
2.1. Measurement of the dependence PSD
leakage current on the temperature
Multi-channel probe station uses for measuring leak-
age current of the active area and protection ring
with PSD leakage current larger than 1 nA. The
probe station allows to make control of 4 measure-
ment channels. Thus two single-channel detector
may be investigated simultaneously. When two de-
tectors are connected, two channels are used for
∗Corresponding author E-mail address: voloshyn@kipt.kharkov.ua
ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).
Series: Nuclear Physics Investigations (60), p.253-258.
253
measuring the leakage current of the active area
of detectors and two channels for measuring the
leakage current of detectors protective rings. A
block diagram of the probe station for the inves-
tigation of the temperature dependence and the
spectral characteristics PSD is shown in Fig. 1.
Fig.1. A block diagram of the probe station for
the investigation of the temperature dependence and
PSD spectral characteristic
The probe station for the measurement of leakage
current consists of the following devices: power sup-
ply unit (PSU), current meter (B7-21), commutation
unit, temperature sensors (TS), a computer with a
digital adapter ACL-7122 and interface card (IC).
Current meter, commutation unit and temperature
sensors are connected to a computer and controlled
via built-in digital adapter ACL-7122, power supply
control by a computer via an interface card.
Preset voltage is supplied to the power supply
on the investigated structure detectors (active areas,
protective ring). Leakage current of the detector and
the temperature are measured and recorded in the
computer. The measured parameters are displayed
on the computer monitor and written to the appro-
priate files. Displaying information is produced in
tabular or graphical form. The procedure is repeated
at the specified interval of time during a given period.
Programmable power supply MOTECH con-
trolled by the computer used for the power supply of
the detectors depletion voltage. the interface board
LPCI-3488A firm ADLINK Technology Inc. uses
for connecting MOTECH. It provides GPIB interface
and it is fully compatible with IEEE488.2 standard
instrumentation. Specialized driver used for trans-
mission the information with interface card and soft-
ware libraries GPIB-32.
Measurement of leakage detectors is performed
us-ing current meter B7-21, connected to the com-
puter through the block input-output register ACL-
7122. The detectors are connected in course to the
current meter through a special commutation scheme.
Control for commutation scheme is also carried out
through the block input-output register ACL-7122.
Exchange of information between the computer and
the power ACL-7122 is made using special driver and
software libraries ACLS-DLL1.
Hot air used for heating of detector blocks. The
air is heated to 60 ◦C by means of heating ele-
ments, which are controlled by an automated sys-
tem. PSD was cooled below room temperature by
nitrogen vapour. This is done by varying the voltage
applied to the micro-heater placed in a vessel with
nitrogen. Temperature control is made by means
of three thermo sensors connected through the block
ACL-7122 to the computer. Temperature sensor TD1
is placed outside of thermostat, TD2 - in the block
for connection of the detector for the spectral char-
acteristics measuring (measuring block 1), TD3 - in
the block for connection of the detector for the static
characteristics measuring (measuring block 2). Dig-
ital thermometer chip DS18S20 connected through
the block input-output register ACL-7122 used as a
temperature sensors.
Transmission of information with temperature
sensors carried for single-channel lines through encod-
ing timing and durations transmitted pulses. Special
protocol used for data transmission and control, when
these sensors work with a computer. The protocol al-
lows create and receive pulses of short length.
Control of the temperature parameters, PSD volt-
age depletion, reading of the output thermal sensors
and measurement characteristics of investigated de-
tectors to the computer display are performed by
a special program. Image of the program window
with allocation of the used panel is shown in Fig. 2.
Fig.2. The program window. Temperature control
panel of the probe station
The following parameters: temperature measurement
interval of temperature measurement, temperature
sensor number, used to control the temperature, of-
fer on the temperature control panel. The connected
measurement channels and their names can be spec-
ify in the program in the field of information output
from the detectors. Selected channels are sampled
with a given period. Leakage current, the tempera-
ture and time are displayed on the monitor in tabular
or graphical form and stored in computer files. Multi-
channel probe station for investigating the temper-
ature dependence of leakage current is limited by
the minimum value of the measured current, consti-
tuting 1 nA. Limitation defined by the presence of
leakage current of 0.1 nA in commutation unit, that
is part of the probe station. An automated single-
channel probe station created for the implementa-
tion the possibility of measuring leakage current less
than 1 nA. Its block diagram is shown in Fig. 3.
254
Fig.3. A block diagram of an automated single-
channel probe station for investigated the temper-
ature dependence of the PSD leakage current, less
than 1 nA
The probe station contains thermostat with tem-
perature sensor (TD), integrated picoammeter PSU
KEITHLEY model 6487, computer with digital
adapter ACL-7122 and interface card (IC).
Picoammeter used for measuring the current and
voltage supply to the monitoring detector. Picoam-
meter connects to a computer through an interface
card CEC-488. Changing the operating mode of pi-
coammeter, set point voltage and current at the out-
put device carried out through software. DS18S20
connected through the block input-output register
ACL-7122 used as the temperature sensor.
Program that provides a sequence of measure-
ments, control of picoammeter, the control charac-
teristics of the detector, displaying the results on
the screen in tabular and graphical form, saving the
results in specified files used for operating of the
probe station. Image of the program window with
graphically displayed information is shown in Fig. 4.
Fig.4. Image of the program window when display-
ing information graphically
The program has the ability to set the following para-
meters: the name of the test detector, file to record
the results, the mode of measurement, permissible
value of the current range and step changes tester
voltage, timing measurements. The measuring cur-
rent compares with specified valid value while the
program operates.
2.2. Measurement of the dependence energy
resolution of the temperature
The probe station shown in Fig. 1., also allows in-
vestigate the dependence of the energy resolution of
single-channel silicon detectors on the temperature.
To do this, the detector is connected to a special unit
that is placed in a temperature-controlled thermo-
stat. In this unit is also the head transistor of pream-
plifier. Signal, which is formed in the detector, goes
to the charge-sensitive amplifier (CSA). Signal from
CSA goes to the amplifier-shaper (AS) and further
to the analog-to-digital converter, built-in computer.
To supply the spectrometer electronics power supply,
based on DC / DC converters, is used.
In the measurement of the spectral character-
istics, the detector temperature and the head of
the transistor CSA with resistive feedback is con-
trolled. Feedback offset voltage 40 V is supplied
to the detector. A high-intensity source of 241Am
in a stainless steel used for measurements of the
spectra (Fig. 5.). The isotope 241Am source is
placed above the detector in a lead container, open
on the part detector. The high intensity of the
(107Bq) allows you to register a sufficient number
of X-rays in a relatively short time of exposure.
Fig.5. Location scheme the detector and the
gamma-ray source
As the figure shows, the radiation from the source
towards the detector goes through the cover of the
connection of the detector and the thermostat. Ther-
mostat cover is made of foam thickness is 2 cm. Cover
for the detector is needed to shield the internal vol-
ume of the unit from external electromagnetic inter-
ference, and is made of aluminium foil with a thick-
ness of 0.1 mm. Effect of materials and thickness
covers the value of the energy resolution is minimal.
Effect of the thickness of the foils and liners kind of
measured spectra was shown in [6].
Special software used for a set, display, process-
ing and recording of spectra. Fig. 6 shows the im-
age of the program window for measuring spectra.
Fig.6. Image of the program window for measuring
the spectra of single-channel silicon detectors
At a set of spectrum, program controls the operation
of the ADC, displays time of spectrum, loading of
255
the measuring channel and the number of pulses in
the spectrum in special fields. It is possible to define
a set spectrum time, stop the program to record the
intermediate range and set of to continue after stop-
ping the spectrum to the desired level of statistical
measurements.
In the program there the ability to increase the se-
lected area spectrum, to provide markers of the area
of interest of the spectrum, for which automatically
counts the number of pulses. Express processing to
calculate the parameters of the selected peak is pro-
vided. The spectra obtained are stored in files on
disk. It is possible to call the previously recorded
spectra of the disk and process them.
3. TEMPERATURE DEPENDENCE OF
LEAKAGE CURRENT AND ENERGY
RESOLUTION OF PSD
Energy resolution by increasing the temperature of
the detector in the range studied is incremented sig-
nificantly less than the PSD leakage current. The
reason is that, the leakage current is in relation to
the noise detector and pre-amplifier is:
Q2
n =
(
e2
8
)[(
2qeId +
4kT
Rp
+ i2na
)
τ+
(
4kTRs + e2
na
) c2
τ
+ 4AfC2
]
(2)
where: e - the base of natural logarithm; qe - electron
charge; Id - leakage detector; k - Boltzmann constant;
T - absolute temperature; Rp - equivalent parallel re-
sistance input; ina - noise spectral density of the input
current preamplifier; τ - signal time; Rs - equivalent
series resistance of the input; ena - noise spectral den-
sity of the input voltage preamplifier; C - total input
capacitance; Af - noise spectral density of the form
1/f [7].
The presence of leakage current due to the ther-
mal generation of electron-hole pairs in the bulk of
semi-conductor detectors, and leakage current on the
surface of the detector degrades its limiting parame-
ters, since the statistical fluctuations of the charge
created by these currents in the integrating circuit,
formed by the statistical fluctuations of the charge
created particle. The leakage current depends on the
type of detector, design, the operating temperature
and other characteristics and other things being equal
increases linearly with increasing area of the detector.
3.1 Temperature dependence of the leakage
current of the PSD
Earlier [3], the results of the effect of temperature on
the characteristics of PSD in the temperature range
above 0◦ C was presented. In this work measurements
the temperature dependence of leakage current and
energy resolution of the single-channel silicon detec-
tors in the temperature range from −30◦ C to 60◦ C
were performed.
The test detectors had the same type of construc-
tions and different initial characteristics at room
temperature. Figs. 7-9 are shown the dependen-
cies of detectors leakage current on temperature.
Fig.7. Detectors H28 and X31 temperature de-
pendence of the leakage current of active areas and
protective rings
Curve 1 (see Fig. 7) corresponds to the leakage cur-
rent of the active area of the detector X31, curve 2
- leakage current of the active area of the detector
H28, curve 1 ’- current of detector X31 protective
ring, curve 2’ - current of detector H28 protective
ring.
Fig. 8 shows the results of the measurements
of leakage current of the active area (1, 1’) and
a protective ring (2, 2’) on the temperature of
the detector X28. Measurements are satisfied
semi-automatically to in-crease the accuracy of
measurements at temperatures below zero, when
the leakage current values attain picoampere.
Fig.8. Detector X28 dependence of the leakage
current of the active area and the protective ring on
the temperatures
Two temperature modes were applied: ”slow” - pass-
ing area temperature range for the time of about 3
hours (in the figure corresponds to curves 1’ and 2’),
and ”fast” - the passage temperature range, a time
of about 1 hour (curves 1, 2). The coincidence of
the curves indicates a good accuracy of the ex-
perimental measurements. Fig. 9 shows the de-
pendence of the leakage current of the active area
PSD H28 on temperature in the range of tem-
peratures below 0◦ C. The value of leakage cur-
rent gradually decreases with decreasing tempera-
ture and when it reaches -30 ◦C reaches pikoamps
values. Curve 1 corresponds to the measurements
256
made in a ”fast” mode, curve 2 - in the ”slow”.
Fig.9. Detector X28 temperature dependence of the
leakage current of active area
As seen from the chart, in the range from −30◦ C
to 60◦ C value of the leakage current varies approx-
imately in factor of 104. The leakage current value
increases smoothly with increasing temperature over
the entire range. The dependence of the leakage
current on temperature has exponential form.
3.2. Temperature dependence of the energy
resolution of the PSD
Dependence of the energy resolution of temperature
was measured for PSD in the temperature range from
−30◦ C to 60◦ C. The energy resolution was mea-
sured through 241Am with energy 59.54 keV , For the
investigated detectors was measured few tens of spec-
tra at different temperatures. From the measured
spectra at different temperatures investigated detec-
tors were calculated their energy resolution.
In Figs. 10-12 are shown the spectra of gamma
radiation 241Am for three different temperatures.
The spectra are measured at the same time. With
an increase in temperature, the width of the peaks
in the spectrum of the radiation increases, and
their height is reduced. Changes in the spectral
characteristics of the influence of temperature re-
lated with planar silicon detectors in its resolu-
tion. When a detector temperature T = −29.7◦C
energy resolution is 0.925 keV (see Fig. 10), at
a temperature T = 19.8◦ C is 1.063 keV (see
Fig. 11), at T = 58.95◦ C is 2.548 keV (see Fig. 12).
Fig.10. The spectrum of gamma radiation 241Am
at temperatures T = −29.7◦ C of the detector X31
Fig.11. The spectrum of gamma radiation 241Am
at temperatures T = 19.8◦ C of the detector X31
Fig.12. The spectrum of gamma radiation 241Am
at temperatures T = 58.95 ◦C of the detector X31
Spectra are shown detector with relatively low leak-
age current and high energy resolution. In the tem-
perature range from −30◦ C to 60◦ C energy resolu-
tion of detector system changes by more than half.
The measured spectra were analyzed, deter-
mined energy resolution detectors (FWHM). The
resulting energy resolution depends on the tem-
perature of the detectors are shown in Fig. 13.
Fig.13. Temperature dependence of the energy res-
olution of the detector H27 (1), H28 (2) and X31 (3)
From Fig 13 shows, that an increase in temperature
above ambient, detector with the worst of the initial
energy resolution of the energy-parameter resolu-
tion increases faster than for detectors with the best
initial energy resolution. When cooled to a tempera-
257
ture of about −20◦ C, curves reach saturation energy
resolution.
Dependence of the energy resolution on the tem-
perature dependence is similar to detector leakage
current (see Figs. 7, 9). However, the leakage current
is continued to decrease with decreasing temperature
detector and the temperature has been reached, at
which the saturation curve of the energy resolution.
From this fact, it can be concluded that the contribu-
tion of noise associated with leakage current becomes
small compared to the total noise spectrometer sys-
tem with sufficient cooling the detector. This means,
that the limit value of FWHM detector due to the
noise amplifier spectrometer path. PSD with non-
high (FWHM 1.6 keV ) and high (FWHM 1.1 keV )
initial characteristics at the cooling shows the energy
resolution 0.9 keV , the difference in the energy reso-
lution is smoothed.
4. CONCLUSIONS
In the temperature range −30◦ C to 60◦ C measured
the energy resolution and leakage current of PSD with
different initial energy resolution (at room tempera-
ture). The method allows for the selection of the PSD
detection systems that operate at elevated tempera-
tures.
Found that with increasing temperature above
room temperature detectors with worse initial char-
acteristics (starting with the worst energy resolution
and leakage current) energy resolution and leakage
current are deteriorated faster than for detectors with
the better initial characteristics.
It is shown that when a certain of the tempera-
ture of the detector (−20◦ C) contribution of noise
associated with the leakage current of the detector,
reaches to the relatively small to the general noise
level spectrometer system and a further lowering of
the temperature detector does not affect the energy
resolution of the detector system as a whole.
References
1. The ALICE Collaboration, K.Aamodt,
A.Abrahantes, N.Maslov, et al. The ALICE Exper-
iment at the CERN LHC, 2008 JINST 3 S08002,
245 p.
2. G.L.Bochek, A.V. Kosinov, N.I.Maslov, et al. Reg-
istration of charged particles in a gamma-ray back-
ground. // Surface. X-ray, Synchrotron and Neutron
research. 2005, v. 4, p. 68-71.
3. G.P.Vasilyev, V.K.Voloshyn, S.K. Kiprich,
N.I.Maslov, S.V. Naumov, S.M.Potin, V.I. Ya-
lovenko. Encapsulated modules of silicon detectors
of ionizing radiation. // Problems of Atomic Sci-
ence and Technology, Series ”Nuclear Physics
Investigations”. 2010, v. 3(54), p. 200-204.
4. G.P.Vasiliyev, A.V.Kosinov, V.I.Kulibaba,
N.I.Maslov, S.V.Naumov, V.D. Ovchinnik. Tem-
perature effect on the characteristics and lifetime
of semiconductor detectors. // Problems of Atomic
Science and Technology. Series ”Nuclear Physics
Investigations”. 2006, v. 3(47), p. 137-139.
5. A.S. Grove. Physics and Technics of Semiconductor
Devices. New York Wiley, 1967, Ch. 6, p. 176-177.
6. G.L.Bochek, O.S. Deiev, N.I.Maslov, V.K.Voloshyn.
X-ray lines relative intensity depending on detector
efficiency,foils and cases thickness for primary and
scattered spectra. // Problems of Atomic Science and
Technology. Series ”Nuclear Physic Investigations”.
2011, v. 3(73), p. 42-49.
7. Helmuth Spieler. Semiconductor detector systems.
Oxford University press, 2005, p. 147.
ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ЭНЕРГЕТИЧЕСКОГО РАЗРЕШЕНИЯ
И ТОКОВ УТЕЧКИ ПЛАНАРНЫХ Si ДЕТЕКТОРОВ
А.С. Деев, Н.И. Маслов, В.Д. Овчинник, С.М. Потин, М.Ю. Шулика, Г.П. Васильев,
В.К. Волошин, В.И. Яловенко
Разработана методика измерений и созданы автоматизированные стенды для исследования темпера-
турной зависимости энергетического разрешения и токов утечки одноканальных планарных кремние-
вых детекторов (ПКД). В диапазоне температур −30◦ C до +60◦ C проведено измерение энергетиче-
ского разрешения и токов утечки ПКД с различным начальным (при комнатной температуре) энер-
гетическим разрешением. Методика позволяет производить отбор ПКД для детектирующих систем,
работающих при повышенных температурах.
ТЕМПЕРАТУРНА ЗАЛЕЖНIСТЬ ЕНЕРГЕТИЧНОЇ РОЗДIЛЬНОЇ ЗДАТНОСТI
ТА СТРУМIВ ВИТОКУ ПЛАНАРНИХ Si ДЕТЕКТОРIВ
А.С.Деєв, М.I. Маслов, В.Д. Овчинник, С.М. Потiн, М.Ю. Шулiка, Г.П. Васильєв,
В.К. Волошин, В.I. Яловенко
Розроблена методика вимiрювань i створенi автоматизованi стенди для дослiдження температурної
залежностi струмiв витоку та енергетичної роздiльної здатностi одноканальных планарних кремнiєвих
детекторiв (ПКД). В дiапазонi температур −30◦ C до +60◦ C проведено вимiрювання енергетичної
роздiльної здатностi та струмiв витоку ПКД з рiзними початковими (при кiмнатнiй температурi)
енергетичними роздiльними здатностями. Методика дозволяє проводити вiдбiр ПКД для детектую-
чих систем, працюючих при пiдвищених температурах.
258
|