Temperature dependence of the energy resolution and leakage current of the planar silicone detectors

The method of measurement and automated test probe station for the study of the temperature dependence of the leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution and leakage current of PSD with different initial (at room temperature)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2013
Hauptverfasser: Deiev, O.S., Maslov, N.I., Ovchinnik, V.D., Potin, S.M., Shulika, M.Y., Vasilyev, G.P., Voloshyn, V.K., Yalovenko, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111839
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Temperature dependence of the energy resolution and leakage current of the planar silicone detectors / O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika, G.P. Vasilyev, V.K. Voloshyn, V.I. Yalovenko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 253-258. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111839
record_format dspace
spelling Deiev, O.S.
Maslov, N.I.
Ovchinnik, V.D.
Potin, S.M.
Shulika, M.Y.
Vasilyev, G.P.
Voloshyn, V.K.
Yalovenko, V.I.
2017-01-15T10:57:15Z
2017-01-15T10:57:15Z
2013
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors / O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika, G.P. Vasilyev, V.K. Voloshyn, V.I. Yalovenko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 253-258. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 29.40.Wk
https://nasplib.isofts.kiev.ua/handle/123456789/111839
The method of measurement and automated test probe station for the study of the temperature dependence of the leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution and leakage current of PSD with different initial (at room temperature) energy resolution in the temperature range from -30° C to 60° C was measured. Method allows to make the PSD selection for the detector systems with the possibility of use at elevated temperatures.
Розроблена методика вимiрювань i створенi автоматизованi стенди для дослiдження температурної залежностi струмiв витоку та енергетичної роздiльної здатностi одноканальных планарних кремнiєвих детекторiв (ПКД). В дiапазонi температур −30° C до +60° C проведено вимiрювання енергетичної роздiльної здатностi та струмiв витоку ПКД з рiзними початковими (при кiмнатнiй температурi) енергетичними роздiльними здатностями. Методика дозволяє проводити вiдбiр ПКД для детектуючих систем, працюючих при пiдвищених температурах.
Разработана методика измерений и созданы автоматизированные стенды для исследования температурной зависимости энергетического разрешения и токов утечки одноканальных планарных кремниевых детекторов (ПКД). В диапазоне температур −30° C до +60° C проведено измерение энергетического разрешения и токов утечки ПКД с различным начальным (при комнатной температуре) энергетическим разрешением. Методика позволяет производить отбор ПКД для детектирующих систем, работающих при повышенных температурах.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Ядернo-физические методы и обработка данных
Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
Температурна залежнiсть енергетичної роздiльної здатностi та струмiв витоку планарних Si детекторiв
Температурная зависимость энергетического разрешения и токов утечки планарных Si детекторов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
spellingShingle Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
Deiev, O.S.
Maslov, N.I.
Ovchinnik, V.D.
Potin, S.M.
Shulika, M.Y.
Vasilyev, G.P.
Voloshyn, V.K.
Yalovenko, V.I.
Ядернo-физические методы и обработка данных
title_short Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
title_full Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
title_fullStr Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
title_full_unstemmed Temperature dependence of the energy resolution and leakage current of the planar silicone detectors
title_sort temperature dependence of the energy resolution and leakage current of the planar silicone detectors
author Deiev, O.S.
Maslov, N.I.
Ovchinnik, V.D.
Potin, S.M.
Shulika, M.Y.
Vasilyev, G.P.
Voloshyn, V.K.
Yalovenko, V.I.
author_facet Deiev, O.S.
Maslov, N.I.
Ovchinnik, V.D.
Potin, S.M.
Shulika, M.Y.
Vasilyev, G.P.
Voloshyn, V.K.
Yalovenko, V.I.
topic Ядернo-физические методы и обработка данных
topic_facet Ядернo-физические методы и обработка данных
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Температурна залежнiсть енергетичної роздiльної здатностi та струмiв витоку планарних Si детекторiв
Температурная зависимость энергетического разрешения и токов утечки планарных Si детекторов
description The method of measurement and automated test probe station for the study of the temperature dependence of the leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution and leakage current of PSD with different initial (at room temperature) energy resolution in the temperature range from -30° C to 60° C was measured. Method allows to make the PSD selection for the detector systems with the possibility of use at elevated temperatures. Розроблена методика вимiрювань i створенi автоматизованi стенди для дослiдження температурної залежностi струмiв витоку та енергетичної роздiльної здатностi одноканальных планарних кремнiєвих детекторiв (ПКД). В дiапазонi температур −30° C до +60° C проведено вимiрювання енергетичної роздiльної здатностi та струмiв витоку ПКД з рiзними початковими (при кiмнатнiй температурi) енергетичними роздiльними здатностями. Методика дозволяє проводити вiдбiр ПКД для детектуючих систем, працюючих при пiдвищених температурах. Разработана методика измерений и созданы автоматизированные стенды для исследования температурной зависимости энергетического разрешения и токов утечки одноканальных планарных кремниевых детекторов (ПКД). В диапазоне температур −30° C до +60° C проведено измерение энергетического разрешения и токов утечки ПКД с различным начальным (при комнатной температуре) энергетическим разрешением. Методика позволяет производить отбор ПКД для детектирующих систем, работающих при повышенных температурах.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111839
citation_txt Temperature dependence of the energy resolution and leakage current of the planar silicone detectors / O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika, G.P. Vasilyev, V.K. Voloshyn, V.I. Yalovenko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 253-258. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT deievos temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT maslovni temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT ovchinnikvd temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT potinsm temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT shulikamy temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT vasilyevgp temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT voloshynvk temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT yalovenkovi temperaturedependenceoftheenergyresolutionandleakagecurrentoftheplanarsiliconedetectors
AT deievos temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT maslovni temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT ovchinnikvd temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT potinsm temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT shulikamy temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT vasilyevgp temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT voloshynvk temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT yalovenkovi temperaturnazaležnistʹenergetičnoírozdilʹnoízdatnostitastrumivvitokuplanarnihsidetektoriv
AT deievos temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
AT maslovni temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
AT ovchinnikvd temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
AT potinsm temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
AT shulikamy temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
AT vasilyevgp temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
AT voloshynvk temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
AT yalovenkovi temperaturnaâzavisimostʹénergetičeskogorazrešeniâitokovutečkiplanarnyhsidetektorov
first_indexed 2025-11-25T22:20:29Z
last_indexed 2025-11-25T22:20:29Z
_version_ 1850563025189208064
fulltext TEMPERATURE DEPENDENCE OF THE ENERGY RESOLUTION AND LEAKAGE CURRENT OF THE PLANAR SILICONE DETECTORS O.S. Deiev, N.I. Maslov, V.D. Ovchinnik, S.M. Potin, M.Y. Shulika, G.P. Vasilyev, V.K. Voloshyn ∗, V.I. Yalovenko National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received March 29, 2013) The method of measurement and automated test probe station for the study of the temperature dependence of the leakage current and energy resolution of single-channel planar silicon detectors (PSD) was created. Energy resolution and leakage current of PSD with different initial (at room temperature) energy resolution in the temperature range from −30◦ C to 60◦ C was measured. Method allows to make the PSD selection for the detector systems with the possibility of use at elevated temperatures. PACS: 29.40.Wk 1. INTRODUCTION Detecting systems based on planar silicon detectors (PSD) are now widely used in spectrometric sys- tems of high energy physics, nuclear physics studies and for various applications [1, 2]. In order to use the PSD in a wide temperature range this is neces- sary to know the temperature dependence of the sta- tic and dynamic characteristics, and above all, the current-voltage characteristics and the energy resolu- tion [3, 4]. Temperature may significantly affect on the leak- age current of the detector, because the tempera- ture of detector material changes the probability of generation-recombination processes in the bulk semi- conductor detector material and in the detector sur- face layers. Leakage current for the planar silicon detector is I = qniWA 2τ (1) where q - electron charge, W - the thickness of detec- tor depleted layer, A - the active area of the detec- tor, ni -intrinsic concentration of charge carriers in a semiconductor detector material, τ - the effective lifetime of nonequilibrium charge carriers [5]. The energy resolution of PSD is largely deter- mined by a detector leakage current. Full energy res- olution spectrometer developed on the basis of planar silicon detectors is defined as the processes occurring in the detector and electronics noise. The goal of this study is to investigate the tem- perature dependence of detector leakage current and the energy resolution of the PSD with different initial (at room temperature) energy resolutions. A pream- plifier with resistive feedback was used for measuring the energy resolution. Custom probe stations and methods of measure- ment were developed for the investigations of the temperature dependence of the silicon single-channel detectors static and the spectral characteristics. A number of measurements of the energy resolution and leakage current for the detectors with different values of these characteristics were carried under room tem- perature. 2. PROBE STATION FOR INVESTIGATION OF THE TEMPERATURE DEPENDENCE OF THE PSD ENERGY RESOLUTION AND LEAKAGE CURRENT An automated multi-channel probe station provides a measurement of static and spectral characteristics of the PSD and the single-channel probe station for investigating the temperature dependence of leakage current of the PSD less than 1 nA. Probe stations allow measurements of the spectra radiation and leak- age current PSD at a controlled temperature in the range from -30 ◦C to +60 ◦C. 2.1. Measurement of the dependence PSD leakage current on the temperature Multi-channel probe station uses for measuring leak- age current of the active area and protection ring with PSD leakage current larger than 1 nA. The probe station allows to make control of 4 measure- ment channels. Thus two single-channel detector may be investigated simultaneously. When two de- tectors are connected, two channels are used for ∗Corresponding author E-mail address: voloshyn@kipt.kharkov.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.253-258. 253 measuring the leakage current of the active area of detectors and two channels for measuring the leakage current of detectors protective rings. A block diagram of the probe station for the inves- tigation of the temperature dependence and the spectral characteristics PSD is shown in Fig. 1. Fig.1. A block diagram of the probe station for the investigation of the temperature dependence and PSD spectral characteristic The probe station for the measurement of leakage current consists of the following devices: power sup- ply unit (PSU), current meter (B7-21), commutation unit, temperature sensors (TS), a computer with a digital adapter ACL-7122 and interface card (IC). Current meter, commutation unit and temperature sensors are connected to a computer and controlled via built-in digital adapter ACL-7122, power supply control by a computer via an interface card. Preset voltage is supplied to the power supply on the investigated structure detectors (active areas, protective ring). Leakage current of the detector and the temperature are measured and recorded in the computer. The measured parameters are displayed on the computer monitor and written to the appro- priate files. Displaying information is produced in tabular or graphical form. The procedure is repeated at the specified interval of time during a given period. Programmable power supply MOTECH con- trolled by the computer used for the power supply of the detectors depletion voltage. the interface board LPCI-3488A firm ADLINK Technology Inc. uses for connecting MOTECH. It provides GPIB interface and it is fully compatible with IEEE488.2 standard instrumentation. Specialized driver used for trans- mission the information with interface card and soft- ware libraries GPIB-32. Measurement of leakage detectors is performed us-ing current meter B7-21, connected to the com- puter through the block input-output register ACL- 7122. The detectors are connected in course to the current meter through a special commutation scheme. Control for commutation scheme is also carried out through the block input-output register ACL-7122. Exchange of information between the computer and the power ACL-7122 is made using special driver and software libraries ACLS-DLL1. Hot air used for heating of detector blocks. The air is heated to 60 ◦C by means of heating ele- ments, which are controlled by an automated sys- tem. PSD was cooled below room temperature by nitrogen vapour. This is done by varying the voltage applied to the micro-heater placed in a vessel with nitrogen. Temperature control is made by means of three thermo sensors connected through the block ACL-7122 to the computer. Temperature sensor TD1 is placed outside of thermostat, TD2 - in the block for connection of the detector for the spectral char- acteristics measuring (measuring block 1), TD3 - in the block for connection of the detector for the static characteristics measuring (measuring block 2). Dig- ital thermometer chip DS18S20 connected through the block input-output register ACL-7122 used as a temperature sensors. Transmission of information with temperature sensors carried for single-channel lines through encod- ing timing and durations transmitted pulses. Special protocol used for data transmission and control, when these sensors work with a computer. The protocol al- lows create and receive pulses of short length. Control of the temperature parameters, PSD volt- age depletion, reading of the output thermal sensors and measurement characteristics of investigated de- tectors to the computer display are performed by a special program. Image of the program window with allocation of the used panel is shown in Fig. 2. Fig.2. The program window. Temperature control panel of the probe station The following parameters: temperature measurement interval of temperature measurement, temperature sensor number, used to control the temperature, of- fer on the temperature control panel. The connected measurement channels and their names can be spec- ify in the program in the field of information output from the detectors. Selected channels are sampled with a given period. Leakage current, the tempera- ture and time are displayed on the monitor in tabular or graphical form and stored in computer files. Multi- channel probe station for investigating the temper- ature dependence of leakage current is limited by the minimum value of the measured current, consti- tuting 1 nA. Limitation defined by the presence of leakage current of 0.1 nA in commutation unit, that is part of the probe station. An automated single- channel probe station created for the implementa- tion the possibility of measuring leakage current less than 1 nA. Its block diagram is shown in Fig. 3. 254 Fig.3. A block diagram of an automated single- channel probe station for investigated the temper- ature dependence of the PSD leakage current, less than 1 nA The probe station contains thermostat with tem- perature sensor (TD), integrated picoammeter PSU KEITHLEY model 6487, computer with digital adapter ACL-7122 and interface card (IC). Picoammeter used for measuring the current and voltage supply to the monitoring detector. Picoam- meter connects to a computer through an interface card CEC-488. Changing the operating mode of pi- coammeter, set point voltage and current at the out- put device carried out through software. DS18S20 connected through the block input-output register ACL-7122 used as the temperature sensor. Program that provides a sequence of measure- ments, control of picoammeter, the control charac- teristics of the detector, displaying the results on the screen in tabular and graphical form, saving the results in specified files used for operating of the probe station. Image of the program window with graphically displayed information is shown in Fig. 4. Fig.4. Image of the program window when display- ing information graphically The program has the ability to set the following para- meters: the name of the test detector, file to record the results, the mode of measurement, permissible value of the current range and step changes tester voltage, timing measurements. The measuring cur- rent compares with specified valid value while the program operates. 2.2. Measurement of the dependence energy resolution of the temperature The probe station shown in Fig. 1., also allows in- vestigate the dependence of the energy resolution of single-channel silicon detectors on the temperature. To do this, the detector is connected to a special unit that is placed in a temperature-controlled thermo- stat. In this unit is also the head transistor of pream- plifier. Signal, which is formed in the detector, goes to the charge-sensitive amplifier (CSA). Signal from CSA goes to the amplifier-shaper (AS) and further to the analog-to-digital converter, built-in computer. To supply the spectrometer electronics power supply, based on DC / DC converters, is used. In the measurement of the spectral character- istics, the detector temperature and the head of the transistor CSA with resistive feedback is con- trolled. Feedback offset voltage 40 V is supplied to the detector. A high-intensity source of 241Am in a stainless steel used for measurements of the spectra (Fig. 5.). The isotope 241Am source is placed above the detector in a lead container, open on the part detector. The high intensity of the (107Bq) allows you to register a sufficient number of X-rays in a relatively short time of exposure. Fig.5. Location scheme the detector and the gamma-ray source As the figure shows, the radiation from the source towards the detector goes through the cover of the connection of the detector and the thermostat. Ther- mostat cover is made of foam thickness is 2 cm. Cover for the detector is needed to shield the internal vol- ume of the unit from external electromagnetic inter- ference, and is made of aluminium foil with a thick- ness of 0.1 mm. Effect of materials and thickness covers the value of the energy resolution is minimal. Effect of the thickness of the foils and liners kind of measured spectra was shown in [6]. Special software used for a set, display, process- ing and recording of spectra. Fig. 6 shows the im- age of the program window for measuring spectra. Fig.6. Image of the program window for measuring the spectra of single-channel silicon detectors At a set of spectrum, program controls the operation of the ADC, displays time of spectrum, loading of 255 the measuring channel and the number of pulses in the spectrum in special fields. It is possible to define a set spectrum time, stop the program to record the intermediate range and set of to continue after stop- ping the spectrum to the desired level of statistical measurements. In the program there the ability to increase the se- lected area spectrum, to provide markers of the area of interest of the spectrum, for which automatically counts the number of pulses. Express processing to calculate the parameters of the selected peak is pro- vided. The spectra obtained are stored in files on disk. It is possible to call the previously recorded spectra of the disk and process them. 3. TEMPERATURE DEPENDENCE OF LEAKAGE CURRENT AND ENERGY RESOLUTION OF PSD Energy resolution by increasing the temperature of the detector in the range studied is incremented sig- nificantly less than the PSD leakage current. The reason is that, the leakage current is in relation to the noise detector and pre-amplifier is: Q2 n = ( e2 8 )[( 2qeId + 4kT Rp + i2na ) τ+ ( 4kTRs + e2 na ) c2 τ + 4AfC2 ] (2) where: e - the base of natural logarithm; qe - electron charge; Id - leakage detector; k - Boltzmann constant; T - absolute temperature; Rp - equivalent parallel re- sistance input; ina - noise spectral density of the input current preamplifier; τ - signal time; Rs - equivalent series resistance of the input; ena - noise spectral den- sity of the input voltage preamplifier; C - total input capacitance; Af - noise spectral density of the form 1/f [7]. The presence of leakage current due to the ther- mal generation of electron-hole pairs in the bulk of semi-conductor detectors, and leakage current on the surface of the detector degrades its limiting parame- ters, since the statistical fluctuations of the charge created by these currents in the integrating circuit, formed by the statistical fluctuations of the charge created particle. The leakage current depends on the type of detector, design, the operating temperature and other characteristics and other things being equal increases linearly with increasing area of the detector. 3.1 Temperature dependence of the leakage current of the PSD Earlier [3], the results of the effect of temperature on the characteristics of PSD in the temperature range above 0◦ C was presented. In this work measurements the temperature dependence of leakage current and energy resolution of the single-channel silicon detec- tors in the temperature range from −30◦ C to 60◦ C were performed. The test detectors had the same type of construc- tions and different initial characteristics at room temperature. Figs. 7-9 are shown the dependen- cies of detectors leakage current on temperature. Fig.7. Detectors H28 and X31 temperature de- pendence of the leakage current of active areas and protective rings Curve 1 (see Fig. 7) corresponds to the leakage cur- rent of the active area of the detector X31, curve 2 - leakage current of the active area of the detector H28, curve 1 ’- current of detector X31 protective ring, curve 2’ - current of detector H28 protective ring. Fig. 8 shows the results of the measurements of leakage current of the active area (1, 1’) and a protective ring (2, 2’) on the temperature of the detector X28. Measurements are satisfied semi-automatically to in-crease the accuracy of measurements at temperatures below zero, when the leakage current values attain picoampere. Fig.8. Detector X28 dependence of the leakage current of the active area and the protective ring on the temperatures Two temperature modes were applied: ”slow” - pass- ing area temperature range for the time of about 3 hours (in the figure corresponds to curves 1’ and 2’), and ”fast” - the passage temperature range, a time of about 1 hour (curves 1, 2). The coincidence of the curves indicates a good accuracy of the ex- perimental measurements. Fig. 9 shows the de- pendence of the leakage current of the active area PSD H28 on temperature in the range of tem- peratures below 0◦ C. The value of leakage cur- rent gradually decreases with decreasing tempera- ture and when it reaches -30 ◦C reaches pikoamps values. Curve 1 corresponds to the measurements 256 made in a ”fast” mode, curve 2 - in the ”slow”. Fig.9. Detector X28 temperature dependence of the leakage current of active area As seen from the chart, in the range from −30◦ C to 60◦ C value of the leakage current varies approx- imately in factor of 104. The leakage current value increases smoothly with increasing temperature over the entire range. The dependence of the leakage current on temperature has exponential form. 3.2. Temperature dependence of the energy resolution of the PSD Dependence of the energy resolution of temperature was measured for PSD in the temperature range from −30◦ C to 60◦ C. The energy resolution was mea- sured through 241Am with energy 59.54 keV , For the investigated detectors was measured few tens of spec- tra at different temperatures. From the measured spectra at different temperatures investigated detec- tors were calculated their energy resolution. In Figs. 10-12 are shown the spectra of gamma radiation 241Am for three different temperatures. The spectra are measured at the same time. With an increase in temperature, the width of the peaks in the spectrum of the radiation increases, and their height is reduced. Changes in the spectral characteristics of the influence of temperature re- lated with planar silicon detectors in its resolu- tion. When a detector temperature T = −29.7◦C energy resolution is 0.925 keV (see Fig. 10), at a temperature T = 19.8◦ C is 1.063 keV (see Fig. 11), at T = 58.95◦ C is 2.548 keV (see Fig. 12). Fig.10. The spectrum of gamma radiation 241Am at temperatures T = −29.7◦ C of the detector X31 Fig.11. The spectrum of gamma radiation 241Am at temperatures T = 19.8◦ C of the detector X31 Fig.12. The spectrum of gamma radiation 241Am at temperatures T = 58.95 ◦C of the detector X31 Spectra are shown detector with relatively low leak- age current and high energy resolution. In the tem- perature range from −30◦ C to 60◦ C energy resolu- tion of detector system changes by more than half. The measured spectra were analyzed, deter- mined energy resolution detectors (FWHM). The resulting energy resolution depends on the tem- perature of the detectors are shown in Fig. 13. Fig.13. Temperature dependence of the energy res- olution of the detector H27 (1), H28 (2) and X31 (3) From Fig 13 shows, that an increase in temperature above ambient, detector with the worst of the initial energy resolution of the energy-parameter resolu- tion increases faster than for detectors with the best initial energy resolution. When cooled to a tempera- 257 ture of about −20◦ C, curves reach saturation energy resolution. Dependence of the energy resolution on the tem- perature dependence is similar to detector leakage current (see Figs. 7, 9). However, the leakage current is continued to decrease with decreasing temperature detector and the temperature has been reached, at which the saturation curve of the energy resolution. From this fact, it can be concluded that the contribu- tion of noise associated with leakage current becomes small compared to the total noise spectrometer sys- tem with sufficient cooling the detector. This means, that the limit value of FWHM detector due to the noise amplifier spectrometer path. PSD with non- high (FWHM 1.6 keV ) and high (FWHM 1.1 keV ) initial characteristics at the cooling shows the energy resolution 0.9 keV , the difference in the energy reso- lution is smoothed. 4. CONCLUSIONS In the temperature range −30◦ C to 60◦ C measured the energy resolution and leakage current of PSD with different initial energy resolution (at room tempera- ture). The method allows for the selection of the PSD detection systems that operate at elevated tempera- tures. Found that with increasing temperature above room temperature detectors with worse initial char- acteristics (starting with the worst energy resolution and leakage current) energy resolution and leakage current are deteriorated faster than for detectors with the better initial characteristics. It is shown that when a certain of the tempera- ture of the detector (−20◦ C) contribution of noise associated with the leakage current of the detector, reaches to the relatively small to the general noise level spectrometer system and a further lowering of the temperature detector does not affect the energy resolution of the detector system as a whole. References 1. The ALICE Collaboration, K.Aamodt, A.Abrahantes, N.Maslov, et al. The ALICE Exper- iment at the CERN LHC, 2008 JINST 3 S08002, 245 p. 2. G.L.Bochek, A.V. Kosinov, N.I.Maslov, et al. Reg- istration of charged particles in a gamma-ray back- ground. // Surface. X-ray, Synchrotron and Neutron research. 2005, v. 4, p. 68-71. 3. G.P.Vasilyev, V.K.Voloshyn, S.K. Kiprich, N.I.Maslov, S.V. Naumov, S.M.Potin, V.I. Ya- lovenko. Encapsulated modules of silicon detectors of ionizing radiation. // Problems of Atomic Sci- ence and Technology, Series ”Nuclear Physics Investigations”. 2010, v. 3(54), p. 200-204. 4. G.P.Vasiliyev, A.V.Kosinov, V.I.Kulibaba, N.I.Maslov, S.V.Naumov, V.D. Ovchinnik. Tem- perature effect on the characteristics and lifetime of semiconductor detectors. // Problems of Atomic Science and Technology. Series ”Nuclear Physics Investigations”. 2006, v. 3(47), p. 137-139. 5. A.S. Grove. Physics and Technics of Semiconductor Devices. New York Wiley, 1967, Ch. 6, p. 176-177. 6. G.L.Bochek, O.S. Deiev, N.I.Maslov, V.K.Voloshyn. X-ray lines relative intensity depending on detector efficiency,foils and cases thickness for primary and scattered spectra. // Problems of Atomic Science and Technology. Series ”Nuclear Physic Investigations”. 2011, v. 3(73), p. 42-49. 7. Helmuth Spieler. Semiconductor detector systems. Oxford University press, 2005, p. 147. ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ЭНЕРГЕТИЧЕСКОГО РАЗРЕШЕНИЯ И ТОКОВ УТЕЧКИ ПЛАНАРНЫХ Si ДЕТЕКТОРОВ А.С. Деев, Н.И. Маслов, В.Д. Овчинник, С.М. Потин, М.Ю. Шулика, Г.П. Васильев, В.К. Волошин, В.И. Яловенко Разработана методика измерений и созданы автоматизированные стенды для исследования темпера- турной зависимости энергетического разрешения и токов утечки одноканальных планарных кремние- вых детекторов (ПКД). В диапазоне температур −30◦ C до +60◦ C проведено измерение энергетиче- ского разрешения и токов утечки ПКД с различным начальным (при комнатной температуре) энер- гетическим разрешением. Методика позволяет производить отбор ПКД для детектирующих систем, работающих при повышенных температурах. ТЕМПЕРАТУРНА ЗАЛЕЖНIСТЬ ЕНЕРГЕТИЧНОЇ РОЗДIЛЬНОЇ ЗДАТНОСТI ТА СТРУМIВ ВИТОКУ ПЛАНАРНИХ Si ДЕТЕКТОРIВ А.С.Деєв, М.I. Маслов, В.Д. Овчинник, С.М. Потiн, М.Ю. Шулiка, Г.П. Васильєв, В.К. Волошин, В.I. Яловенко Розроблена методика вимiрювань i створенi автоматизованi стенди для дослiдження температурної залежностi струмiв витоку та енергетичної роздiльної здатностi одноканальных планарних кремнiєвих детекторiв (ПКД). В дiапазонi температур −30◦ C до +60◦ C проведено вимiрювання енергетичної роздiльної здатностi та струмiв витоку ПКД з рiзними початковими (при кiмнатнiй температурi) енергетичними роздiльними здатностями. Методика дозволяє проводити вiдбiр ПКД для детектую- чих систем, працюючих при пiдвищених температурах. 258