Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors with the Supercritical Water-Cooling under irradiation. Specimens in water...
Saved in:
| Date: | 2013 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/112080 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov, V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot, O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2013. — № 6. — С. 230-234. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-112080 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1120802025-02-09T09:38:54Z Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop Опромінення електронами зразків матеріалів ядерних реакторів нового покоління у надкритичній водяній конвекційній петлі Облучение электронами образцов материалов ядерных реакторов нового поколения в сверхкритической водяной конвекционной петле Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Biller, E.Z. Bytenko, P.A. Bocharov, V.A. Vereshchaka, V.N. Dovbnya, A.N. Duldya, S.V. Gorenko, Yu.V. Kovalev, G.G. Momot, V.A. Repihov, O.A. Romanovsky, S.K. Savchenko, A.N. Seleznev, V.V. Solodovnikov, V.I. Titov, V.I. Torgovkin, A.V. Handak, V.V. Shelepko, S.V. Tcebenko, G.N. Применение ускоренных пучков. детекторы и детектирование ядерных излучений The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors with the Supercritical Water-Cooling under irradiation. Specimens in water flow were irradiated in situ by the 10 MeV/10 kW electron beam of the LAE-10 linear accelerator. The high power relativistic electron-gamma irradiation delivers the absorbed doses sufficient for activation of corrosion and oxidation of material-coolant interfaces. The first results of the electron irradiation of Zr and Inconel 690 samples during 500 hours are gave. Надкритичний реактор з водяним охолодженням (SCWR) − одна з самих багатообіцяючих реакторних технологій в програмі реакторів IV покоління. З 2009 року в Харківському фізико-технічному інституті ведуться роботи, спрямовані на розвиток обладнання та методології для оцінки реакторних матеріалів, призначених для реакторів SCWR (проект УНТЦ - P4841). Спеціально розроблена в ХФТІ надкритична водяна конвекційна петля з камерою опромінення, зв’язана з прискорювачем електронів ЛП-10 (8…10 МеВ, до 10 кВт), дає можливість для дослідження корозії та механічних пошкоджень матеріалів після опромінення пучком електронів. Приводяться результати 500-годинного сеансу опромінення зразків цирконію та інконеля. Суперкритический водно-охлаждаемый реактор (SCWR) − одна из самых многообещающих реакторных технологий в программе реакторов IV поколения. С 2009 года в Харьковском физико-техническом институте ведутся работы, направленные на развитие оборудования и методологии для оценки реакторных материалов, предназначенных для реакторов SCWR (проект УНТЦ - P4841). Специально разработанная в ХФТИ суперкритическая водяная конвекционная петля с камерой облучения, связанная с ускорителем электронов ЛУ-10 (8…10 МэВ, до 10 кВт) предоставляет возможность для изучения коррозии и механических повреждений материалов при облучении пучком электронов. Приводятся результаты 500-часового сеанса облучения образцов циркония и инконеля. 2013 Article Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov, V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot, O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2013. — № 6. — С. 230-234. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 07.35.+k, 29.20.Ej, 28.52.Fa https://nasplib.isofts.kiev.ua/handle/123456789/112080 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Применение ускоренных пучков. детекторы и детектирование ядерных излучений Применение ускоренных пучков. детекторы и детектирование ядерных излучений |
| spellingShingle |
Применение ускоренных пучков. детекторы и детектирование ядерных излучений Применение ускоренных пучков. детекторы и детектирование ядерных излучений Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Biller, E.Z. Bytenko, P.A. Bocharov, V.A. Vereshchaka, V.N. Dovbnya, A.N. Duldya, S.V. Gorenko, Yu.V. Kovalev, G.G. Momot, V.A. Repihov, O.A. Romanovsky, S.K. Savchenko, A.N. Seleznev, V.V. Solodovnikov, V.I. Titov, V.I. Torgovkin, A.V. Handak, V.V. Shelepko, S.V. Tcebenko, G.N. Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop Вопросы атомной науки и техники |
| description |
The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors with the Supercritical Water-Cooling under irradiation. Specimens in water flow were irradiated in situ by the 10 MeV/10 kW electron beam of the LAE-10 linear accelerator. The high power relativistic electron-gamma irradiation delivers the absorbed doses sufficient for activation of corrosion and oxidation of material-coolant interfaces. The first results of the electron irradiation of Zr and Inconel 690 samples during 500 hours are gave. |
| format |
Article |
| author |
Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Biller, E.Z. Bytenko, P.A. Bocharov, V.A. Vereshchaka, V.N. Dovbnya, A.N. Duldya, S.V. Gorenko, Yu.V. Kovalev, G.G. Momot, V.A. Repihov, O.A. Romanovsky, S.K. Savchenko, A.N. Seleznev, V.V. Solodovnikov, V.I. Titov, V.I. Torgovkin, A.V. Handak, V.V. Shelepko, S.V. Tcebenko, G.N. |
| author_facet |
Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Biller, E.Z. Bytenko, P.A. Bocharov, V.A. Vereshchaka, V.N. Dovbnya, A.N. Duldya, S.V. Gorenko, Yu.V. Kovalev, G.G. Momot, V.A. Repihov, O.A. Romanovsky, S.K. Savchenko, A.N. Seleznev, V.V. Solodovnikov, V.I. Titov, V.I. Torgovkin, A.V. Handak, V.V. Shelepko, S.V. Tcebenko, G.N. |
| author_sort |
Bakai, A.S. |
| title |
Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop |
| title_short |
Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop |
| title_full |
Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop |
| title_fullStr |
Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop |
| title_full_unstemmed |
Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop |
| title_sort |
electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2013 |
| topic_facet |
Применение ускоренных пучков. детекторы и детектирование ядерных излучений |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/112080 |
| citation_txt |
Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov, V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot, O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2013. — № 6. — С. 230-234. — Бібліогр.: 16 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT bakaias electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT boriskinvn electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT bratchenkomi electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT billerez electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT bytenkopa electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT bocharovva electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT vereshchakavn electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT dovbnyaan electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT duldyasv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT gorenkoyuv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT kovalevgg electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT momotva electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT repihovoa electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT romanovskysk electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT savchenkoan electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT seleznevvv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT solodovnikovvi electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT titovvi electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT torgovkinav electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT handakvv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT shelepkosv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT tcebenkogn electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop AT bakaias opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT boriskinvn opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT bratchenkomi opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT billerez opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT bytenkopa opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT bocharovva opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT vereshchakavn opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT dovbnyaan opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT duldyasv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT gorenkoyuv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT kovalevgg opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT momotva opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT repihovoa opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT romanovskysk opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT savchenkoan opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT seleznevvv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT solodovnikovvi opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT titovvi opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT torgovkinav opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT handakvv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT shelepkosv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT tcebenkogn opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí AT bakaias oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT boriskinvn oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT bratchenkomi oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT billerez oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT bytenkopa oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT bocharovva oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT vereshchakavn oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT dovbnyaan oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT duldyasv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT gorenkoyuv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT kovalevgg oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT momotva oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT repihovoa oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT romanovskysk oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT savchenkoan oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT seleznevvv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT solodovnikovvi oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT titovvi oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT torgovkinav oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT handakvv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT shelepkosv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle AT tcebenkogn oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle |
| first_indexed |
2025-11-25T10:00:27Z |
| last_indexed |
2025-11-25T10:00:27Z |
| _version_ |
1849756051128188928 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2013. №6(88) 230
ELECTRON IRRADIATION OF THE MATERIAL SAMPLES
OF NEW GENERATION NUCLEAR REACTORS
IN THE SUPERCRITICAL WATER CONVECTION LOOP
A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov,
V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot,
O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov,
V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: boriskin@kipt.kharkov.ua
The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant
makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors
with the Supercritical Water-Cooling under irradiation. Specimens in water flow were irradiated in situ by the
10 MeV/10 kW electron beam of the LAE-10 linear accelerator. The high power relativistic electron-gamma irradia-
tion delivers the absorbed doses sufficient for activation of corrosion and oxidation of material-coolant interfaces.
The first results of the electron irradiation of Zr and Inconel 690 samples during 500 hours are gave.
PACS: 07.35.+k, 29.20.Ej, 28.52.Fa
INTRODUCTION
The Supercritical Water-Cooled Reactor (SCWR) is
one of the most promising nuclear technologies identi-
fied for R&D under the Generation IV (GenIV) program
[2]. At Atomic Energy of Canada Limited (AECL) the
SCWR has been recognized as the next evolutionary
step of CANDU technology and given a high priority
status [3 - 5]. Diverse developments for the next genera-
tion SCWRs are being currently carried out in Korea [6-
8], the U.S. [9, 10], Japan [11], Russia [12], and China
[13]. Along with the Very High-Temperature Reactor
(VHTR) and Molten Salt Reactor (MSR) systems of
Generation IV roadmap [1], SCWR technologies (either
CANDU or Super-WWER-related) may also be consid-
ered as possible candidates for GenIV prospects of nu-
clear power industry of Ukraine.
Different construction materials are being consid-
ered as candidates for the SCWR: austenitic and ferrit-
ic/martensitic (F/M) stainless steels (SS), Ni-, Zr-, and
Ti-based alloys, as well as innovative oxide dispersion
strengthened (ODS) steels and alloys. Their corrosion
rates and stress corrosion cracking (SCC) in pure SCW
are being studied experimentally using SCW circulation
loops (SCWCL) without irradiation. A comprehensive
survey of current R&D can be found, e.g. [9]. Experi-
ments at test SCWCL facilities [10, 14] provide us with
valuable data on temperature and material composition
dependencies of corrosion rate [9, 14] for various struc-
tural materials, as well as on the impact of SCW chem-
istry on corrosion kinetics of steels and alloys. Howev-
er, this experience is insufficient for designing and con-
struction of the SCWR since radiation effects are well
known to affect corrosion behavior of materials. It
should be emphasized that currently there are no exper-
imental data on the corrosion and SCC of structural ma-
terials in the SCW flows under irradiation. The sparse
data available [9] are limited to the experiments with
pre-irradiated samples. These experiments have defi-
nitely shown that the temperature dependent rate of in-
tergranular cracking of 304 and 316L stainless steels in
SCW is increased considerably for samples subjected to
prior irradiation by protons to the radiation damage dose
of several dpa [9]. It strongly motivates further investi-
gations of irradiation impact on SCW induced corro-
sion.
The corresponding test facilities are currently de-
signed and commissioned, e.g., in the Irradiated Materi-
al Testing Laboratory (IMTL) at the University of
Michigan (U.S.A.) [15] where SCC of materials irradi-
ated in reactors by neutrons and gamma quanta will be
studied in SCW low-oxygen closed-loop circuit de-
signed for 30 MPa/600°C operation. It is worth noting
that high radioactivity of neutron irradiated specimens
has necessitated the application of automated systems of
samples handling and the use of hot cells for sample
preparation and post-irradiation SEM tests of micro-
structure. The radiation safety requirements make these
experiments rather complicated and expensive. Never-
theless, since in situ irradiation is out of the present time
capabilities of the IMTL facility, the investigations of
combined effects of SCW impact and neutron irradia-
tion (that are expected to occur in SCWR environment)
still remain impossible within the framework of these
important developments.
The irradiation induced impact of SCW radiolysis on
flow control and instabilities, incl. transitions from sub-
critical to supercritical state, is of great interest for
SCWR R&D and can also influence the corrosion of
structural materials. These issues require thorough stud-
ies using dedicated experimental facilities [16] that offer
combined exposure of samples to both SCW flow and
irradiation.
In 2009 the Canadian government provided funding
to support collaborative activities between the NSC
Kharkov Institute of Physics and Technology (KIPT)
and their colleagues from AECL’s Chalk River Labora-
tories aimed at the development of advanced experi-
mental facilities and methodologies for the assessment
of reactor materials recognized as promising candidates
for SCW reactors. The advanced skills of KIPT experts
in structural materials design and testing, along with
experience in simulation of reactor in-pile irradiation
using gamma, electron, and ion irradiation, will be em-
ployed for SCWR candidate materials characteriza-
tion.These activities are managed by the Science &
ISSN 1562-6016. ВАНТ. 2013. №6(88) 231
Technology Centre in Ukraine (STCU) within the
framework of the Canada-Ukraine partner project STCU
#4841 “SCW Convection Loop for Materials Assess-
ment for the Next Generation Reactors”. The Project
goal is the design and construction of Canada-Ukraine
Electron Irradiation Test Facility (CU-EITF) having a
specially developed SCWCL with target test cell sub-
jected to electron irradiation. After having been put into
operation CU-EITF will be used for collaborative tests
of structural materials for GenIII+ and GenIV reactors
of the CANDU family (ACR, CANDU SCWCR).
1. THE SUPERCRITICAL WATER
CONVECTION LOOP DESIGN
The dimensions of the loop (1.2×1.5 m) and other
component parts of SCWCL are essentially determined
by the size and arrangement of the KIPT-sited bunker
room, which houses the electron accelerator (Fig. 1).
Fig. 1. The placement of the SCWCL in the LAE-10
bunker room
A schematic representation of the major components
of the CU-EITF design is shown in Fig. 2. It is concep-
tually similar to various SCW natural and forced circu-
lation loops that are currently operating and projected
(see, e.g., [10, 14, 15]) but notably differs by the incor-
poration of the electron linac LAE-10 and the appropri-
ate irradiation cell (IC).
All component parts of the SCWCL are designed for
safe operation at temperatures up to 450°C (723 K) and
pressures up to 25 MPa. The loop is made of stainless
steel 12X18H10T and has an external pipe diameter
40 mm and wall thickness of 4 mm. It has two detacha-
ble flange connections at the entrances to the irradiation
cell and pump.
The water is heated to a temperature above the critical
point by the four-section external electric heater with a
total power of up to 20 kW. Water circulation in the loop
is due to natural convection, and can be adjusted by the
influence of the 0.5 kW circulation pump. The upper part
of the loop is cooled by a tubular cooler. Two versions of
the SCWCL (with detachable flanges and all-welded)
have been built. The experiment results with the all-
welded SCWCL with four-channel irradiation cell (with-
out recourse to the circulation pump) are given below.
Fig. 2. Schematics of the CU-EITF design
For chemical analysis and degassing, a small portion of
water is discharged from the loop through the capillaries,
valves and filter into the accumulation tank partially filled
with nitrogen. The recirculation of the water back into the
loop after degassing is provided by the high-pressure
pump (HPLC). The operation of automatic valves and
pumps is controlled by an Intel™ CPU based personal
computer. For the protection of the elements of the de-
gassing line from overheating, capillaries are cooled
with special coolers to a temperature below 100°C.
The control system is designed to provide routine
measurements of pressure, flow rate and temperature at
several points on the surface of the loop. The system
regulates the supply of electric power in the heaters and
controls the operation of pumps and valves. In case of
an emergency, when the temperature and/or pressure of
SCWCL components exceed the specified values, the
control system disables the heaters, the linac beam cur-
rent, and pumps. For extra protection of the loop, a me-
chanical safety valve that prevents overpressure beyond
27 MPa is installed. The view of the accelerator bunker
is made with the help of a video camera.
The irradiation of specimens (as well as additional
heating and ionization of the water) occurs in the irradi-
ation cell CU-EITF. The cylindrical irradiation cell (IC)
is an integral (but interchangeable) part of the CU-EITF
SCWCL. Different ICs can be used in different simula-
tion experiments depending upon the materials under
investigation. Three kinds of the cylindrical IC are de-
signed and produced (Figs. 3-6). The longitudinal size
IC (310 mm) was determined by scanning system am-
plitude of the linac on the frontal IC surface.
Fig. 3. The design drawings (a) and 3D computer model
(b) of the CU-EITF irradiation cell
ISSN 1562-6016. ВАНТ. 2013. №6(88) 232
The thickness of the steel chamber front wall should
be no more than 2 mm for the energy losses of the
10 MeV electron beam on the front surface IC were a
minimum. At making of the IC cases from the titan al-
loys which density is twice below of the steel density,
the thickness of a face-to-face wall of the chamber
should not be more than 4 mm.
Fig. 4. The view of the
one-channel irradiation
cell The material cell is
an alloy of titan VT22,
the thickness of the cell
wall – 4 mm, external
diameter – 40 mm
Fig. 5. The view of the
four-channel irradiation
cell. The material cell is
stainless steel 12Х18Н10,
the thickness of the cell
wall – 2 mm, external pipe
diameter – 14 mm
Variant IC (see Fig. 5) with four-channel steel case
without flanges (external pipe diameter – 14 mm, a wall
thickness – 2 mm) has higher durability in comparison
with IC (see Fig. 3). Reduction of the total area of inter-
nal section of this IC allows receiving higher linear
speeds of water moving along samples (see Fig. 6).
Overlapping of a diagonal of section IC with an axis
of a bunch creates the irradiation conditions at which
samples in face-to-face tube IC test influence of water,
primary beam electrons and gammas, and samples in a
back tube practically are not irradiated by primary elec-
trons at the same influence of water and gammas. Thus,
such design IC allows estimating the primary electron
contribution in destruction of an irradiated sample sur-
face by corrosion (see Fig. 6).
Fig. 6. The view of the consoles with the samples and
the pipes of the four-channel irradiation cell
2. THE RESULTS OF THE SAMPLE
IRRADIATION
When used the all-welded SCWCL “Loop-1a” with
the four-channel irradiation cell, the first time in the
world it was possible to receive the irradiation results of
the Inconel 690 and Zr samples by electrons. The sam-
ples are irradiated at a pressure of 23.5 MPа and a tem-
perature below 380ºС. The total session duration was
574 hours (including 497 hours with the electron beam),
the maximum fluence on the irradiation cell surface was
1020 el/cm2. The operating schedule SCWCL “Loop-1a”
is shown in Fig. 7.
tT, tIp - Loop-1a.
0
5
10
15
20
25
14
.0
7.
20
12
16
.0
7.
20
12
18
.0
7.
20
12
20
.0
7.
20
12
22
.0
7.
20
12
24
.0
7.
20
12
26
.0
7.
20
12
28
.0
7.
20
12
30
.0
7.
20
12
01
.0
8.
20
12
03
.0
8.
20
12
05
.0
8.
20
12
07
.0
8.
20
12
09
.0
8.
20
12
11
.0
8.2
01
2
13
.0
8.
20
12
15
.0
8.
20
12
17
.0
8.
20
12
19
.0
8.
20
12
21
.0
8.2
01
2
23
.0
8.
20
12
25
.0
8.
20
12
t(
h
r) tT(hr)
tIp(hr)
Fig. 7. The total operating time (tT) of the Loop 1a
including the time with the electron beam (tIp).
July-August, 2012
During the simulation experiments the irradiation
cell CU-EITF was exposed to the electron beam of the
LAE10 with the energy 10…11 MeV and the scanning
frequency along the irradiation cell 3 Hz. The average
electron beam current was below 1 mA. The electron
beam impulse frequency was 250 Hz. The duration of
the impulse was 3.4 µs. Average power of the accelera-
tor electron beam is equal 7 kW at a long operating
schedule. Actual parameters of long irradiation sessions
can differ a little from designated above nominal pa-
rameters, they are checked by the automatic monitoring
system of the linear accelerator.
Fig. 8. The characteristic form of a electron energy
spectrum of the accelerator LAE-10 in KIPT
and the characteristic of distribution density
of the scanned electron beam on the surface IC
For example, the 10 MeV energy spectrum, meas-
ured during experiment, is represented in a Fig. 8. It has
the most probable energy 9.6 MeV with the long tail
which has been stretched up to 13 MeV.
The loop was filled with water with average parame-
ters pH = 6.5, conductivity 7…11 µS/cm, oxygen
ppb = 0.5. Water from a loop acted with rate of
5 ml/mines. Time of delivery of tests on a 30-meter wa-
ter-main was 5 hours. Parameters of water were
pH = 5.3…6, conductivity 7…23 µS/cm, oxygen
ISSN 1562-6016. ВАНТ. 2013. №6(88) 233
ppb = 3…4 on an output from a water-main. After de-
contamination water came back in the loop. The gain of
conductivity was about 0.1 µS/cm at one hour, i.e. the
salt amount in water increased. At carrying out of the
element chemical analysis of structure of tests of water
by means of spectrometer ICPE-9000 of firm
“Sumadzo” it is established, that practically at all tests
of water from a loop there is a chrome (8…54 µg/l) and
there is no zirconium. The isotope structure of samples
after an irradiation is resulted in Table.
Samples Isotops
half-life period)
Zr Zr89(78 h), Zr95(64 d), Nb92(10 d),
Nb95(64 d), Nb95m(86 h)
Inconel 690 Cr51(27 d), Mn54(312 d), Co57(273 d),
Co58(70 d), Nb92
Steel
12Х18Н10Т
cases
Cr51, Mn54, Co57, Co58
CONCLUSIONS
Supercritical Water Convection Loop (SCWCL)
with the irradiation cell, connected with the electron
accelerator LAE-10 (10 MeV energy, below 10 kW
power), was developed specially. Rather short time of
the creation of the plant and low cost (in the comparison
with nuclear reactors) and an opportunity to investigate
the irradiated materials from hot chambers do the of-
fered technique of imitating experiments by very effec-
tive tool for obtaining of the necessary data to choose
the materials for active zone SCWR.
The basic results:
• For the first time the Supercritical Water Convection
Loop with the four-channel irradiation cell from the
steel, filled by the samples of two types (from the
Inconel 690 alloy with double-layer fusing from the
In 52MSS wire and from the Zr alloy), was success-
fully tested on an electron irradiation. The total ses-
sion duration was 574 hours (including 497 hours
with the electron beam), the maximum fluence on
the irradiation cell surface was 1020 el/cm2. Operat-
ing mode of a loop – Р = 23.5 MPа, the maximal
temperature on a irradiation cell surface up to 380ºС.
• During sessions of an irradiation the maximal gain
of weight on Zr samples is 0.75 mg/cm2, and on In-
conel 690 samples is 1.5 mg/cm2 as a result of cor-
rosion.
• During an irradiation parameters of water from a
loop changed within the limits of: pH – 5.3…6, con-
ductivity – 7…23 µS/cm, oxygen ppb – 3…4.
• Change of water conductivity in the loop during the
irradiation was neaby 0.1 µS/cm at one hour, i.e. the
impurity quantity in water was increased.
• In particular the increase Cr amount in water for the
same period was about 0.1 µg/l at at one hour.
REFERENCES
1. A.S. Bakai, V.N. Boriskin, A.N. Dovbnya,
S.V. Dyuldya, and D.A. Guzonas. Supercritical water
convection loop (NSC KIPT) for materials assess-
ment for the next generation reactors // Proc. The
5th Int. Sym. SCWR (ISSCWR-5). Vancouver, Cana-
da, March 13-16, 2011.
2. U.S. DOE nuclear energy research advisory commit-
tee and the Generation IV international forum,
A Technology Roadmap for Generation IV Nuclear
Energy Systems, GIF-002-00, (December 2002).
3. R.B. Duffey, H.F. Khartabil, I.L Pioro,
J.M. Hopwood. The future of nuclear: SCWR Gen-
eration IV high performance channels // Proc. of the
11th Int. Conf. on Nuclear Engineering (ICONE-11).
Shinjuku, Tokyo, Japan, April 20-23, 2003, Paper
№ 36222, 8 pages.
4. K.P. Boyle, D. Brady, D. Guzonas, H. Khartabil,
L. Leung, J. Lo, S. Quinn, S. Suppiah, W. Zheng.
Canada’s Generation IV national program – over-
view // Proc. of 4th Int. Symposium on Supercritical
Water-Cooled Reactors. March 8-11, 2009, Heidel-
berg, Germany, Paper № 74, 13 p.
5. M. Naidin, I. Pioro, U. Zirn, S. Mokry, G. Naterer.
Supercritical water-cooled NPPs with co-generation
of hydrogen: general layout and thermodynamic-
cycles options // ibid. Paper № 78, 11 p.
6. Y.-Y. Bae, J. Jang, H.-Y. Kim, H.-Y. Yoon, H.-O. Kang,
K.-M. Bae. Research activities on a supercritical
pressure water reactor in Korea // Nuclear Engineer-
ing and Technology. 2007, v. 39, № 4, p. 273-286.
7. S.-Y. Hong, K. Lee, S.-M. Bae, Y.-B. Kim, Y.-Y. Bae.
Interim results of SCWR development feasibility
study in Korea // Proc. of 4th Int. Symposium on Su-
percritical Water-Cooled Reactors. March 8-11,
2009, Heidelberg, Germany, Paper № 50, 6 p.
8. Y.Y. Bae, H.Y. Kim, J.H. Kwon, S.M. Bae, K. Lee,
Y.B. Kim, S.Y. Hong. Update on the SCWR re-
search in Korea // ibid. Paper № 52, 8 p.
9. G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre,
E.A. West, T.R. Allen, K. Sridharan, L. Tan,
Y. Chen, X. Ren, C. Pister. Corrosion and stress cor-
rosion cracking in supercritical water // Journal of
Nuclear Materials. 2007, v. 371, p. 176-201.
10. M.H. Anderson, J.R. Licht, M.L. Corradini. Progress
on the University of Wisconsin super-critical water
heat transfer facility // Proc. of the 11th Int. Topical
on Nuclear Reactor Thermal-Hydraulics (NURETH
11). Avignon, France, October 2-6, 2005, paper 265.
11. Y. Ishiwatari, Y. Oka, K. Yamada. Japanese R&D
projects on pressure-vessel type SCWR // Proc. of
4th Int. Symposium on Supercritical Water-Cooled
Reactors. March 8-11, 2009, Heidelberg, Germany,
Paper № 73, 9 p.
12. Yu.D. Barnayev, P.L. Kirillov, V.M. Poplavskij,
V.N. Sharapov. Nuclear reactors based on super-
critical pressure water // Atomic Energy. 2004, v. 96,
№ 5, p. 374-380.
13. X. Cheng, R&D activities on SCWR in China //
Proc. of 4th Int. Symposium on Supercritical Water-
Cooled Reactors. March 8-11, 2009, Heidelberg,
Germany, Paper № 53, 14 p.
14. S.S. Hwang, B.H. Lee, J. G. Kim, J. Jang. SCC and
corrosion evaluations of the F/M steels for a super-
critical water reactor // Journal of Nuclear Materi-
als. 2008, v. 372, p. 177-181.
ISSN 1562-6016. ВАНТ. 2013. №6(88) 234
15. S. Teysseyre, Q. Peng, C. Becker, G.S. Was. Facility
for stress corrosion cracking of irradiated specimens
in supercritical water // Journal of Nuclear Materi-
als. 2007, v. 371, p. 98-106.
16. P. Hajek, R. Vsolak, M. Ruzickova. First experience
with operating the supercritical water loop // Proc. of
4th Int. Symposium on Supercritical Water-Cooled
Reactors. March 8-11, 2009, Heidelberg, Germany,
Paper № 69, 10 page.
Article received 25.09.2013
ОБЛУЧЕНИЕ ЭЛЕКТРОНАМИ ОБРАЗЦОВ МАТЕРИАЛОВ ЯДЕРНЫХ РЕАКТОРОВ НОВОГО
ПОКОЛЕНИЯ В СВЕРХКРИТИЧЕСКОЙ ВОДЯНОЙ КОНВЕКЦИОННОЙ ПЕТЛЕ
А.С. Бакай, В.Н. Борискин, М.И. Братченко, Е.З. Биллер, П.А. Бутенко, В.А. Бочаров, В.Н. Верещака,
А.Н. Довбня, С.В. Дюльдя, Ю.В. Горенко, Г.Г. Ковалев, В.А. Момот, О.А. Репихов, С.К. Романовский,
А.Н. Савченко, В.В. Селезнев, В.И. Солодовников, В.И. Титов, А.В. Торговкин, В.В. Хандак,
С.В. Шелепко, Г.Н. Цебенко
Суперкритический водно-охлаждаемый реактор (SCWR) − одна из самых многообещающих реакторных
технологий в программе реакторов IV поколения. С 2009 года в Харьковском физико-техническом институ-
те ведутся работы, направленные на развитие оборудования и методологии для оценки реакторных матери-
алов, предназначенных для реакторов SCWR (проект УНТЦ - P4841). Специально разработанная в ХФТИ
суперкритическая водяная конвекционная петля с камерой облучения, связанная с ускорителем электронов
ЛУ-10 (8…10 МэВ, до 10 кВт) предоставляет возможность для изучения коррозии и механических повре-
ждений материалов при облучении пучком электронов. Приводятся результаты 500-часового сеанса облуче-
ния образцов циркония и инконеля.
ОПРОМІНЕННЯ ЕЛЕКТРОНАМИ ЗРАЗКІВ МАТЕРІАЛІВ ЯДЕРНИХ РЕАКТОРІВ НОВОГО
ПОКОЛІННЯ У НАДКРИТИЧНІЙ ВОДЯНІЙ КОНВЕКЦІЙНІЙ ПЕТЛІ
О.С. Бакай, В.М. Борискін, М.І. Братченко, Є.З. Біллер, П.А. Бутенко, В.О. Бочаров, В.М. Верещака,
А.М. Довбня, С.В. Дюльдя, Ю.В. Горенко, Г.Г. Ковальов, В.О. Момот, О.О. Репихов, С.К. Романовський,
А.М. Савченко, В.В. Селезньов, В.І. Солодовніков, В.І. Тітов, О.В. Торговкін, В.В. Хандак, С.В. Шелепко,
Г.М. Цебенко
Надкритичний реактор з водяним охолодженням (SCWR) − одна з самих багатообіцяючих реакторних
технологій в програмі реакторів IV покоління. З 2009 року в Харківському фізико-технічному інституті ве-
дуться роботи, спрямовані на розвиток обладнання та методології для оцінки реакторних матеріалів, приз-
начених для реакторів SCWR (проект УНТЦ - P4841). Спеціально розроблена в ХФТІ надкритична водяна
конвекційна петля з камерою опромінення, зв’язана з прискорювачем електронів ЛП-10 (8…10 МеВ, до
10 кВт), дає можливість для дослідження корозії та механічних пошкоджень матеріалів після опромінення
пучком електронів. Приводяться результати 500-годинного сеансу опромінення зразків цирконію та інконеля.
ELECTRON IRRADIATION of the MATERIAL SAMPLES OF NEW GENERATION NUCLEAR REACTORS in the SUPERCRITICAL WATER CONVECTION LOOP
Introduction
1. THE Supercritical Water Convection Loop DESIGN
Fig. 6. The view of the consoles with the samples and the pipes of the four-channel irradiation cell
2. the results of the sample irradiation
CONCLUSiONS
REFERENCES
Облучение электронами образцов материалов ядернЫх реакторов нового поколения в сверхкритической водяной конвекционной петле
ОПромінення Електронами ЗРАЗКІв матеріалів ядерних реакторів нового покоління У НАДкритичНІй водянІй конвекцІЙнІй петлІ
|