Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop

The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors with the Supercritical Water-Cooling under irradiation. Specimens in water...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Bakai, A.S., Boriskin, V.N., Bratchenko, M.I., Biller, E.Z., Bytenko, P.A., Bocharov, V.A., Vereshchaka, V.N., Dovbnya, A.N., Duldya, S.V., Gorenko, Yu.V., Kovalev, G.G., Momot, V.A., Repihov, O.A., Romanovsky, S.K., Savchenko, A.N., Seleznev, V.V., Solodovnikov, V.I., Titov, V.I., Torgovkin, A.V., Handak, V.V., Shelepko, S.V., Tcebenko, G.N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112080
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov, V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot, O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2013. — № 6. — С. 230-234. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112080
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1120802025-02-09T09:38:54Z Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop Опромінення електронами зразків матеріалів ядерних реакторів нового покоління у надкритичній водяній конвекційній петлі Облучение электронами образцов материалов ядерных реакторов нового поколения в сверхкритической водяной конвекционной петле Bakai, A.S. Boriskin, V.N. Bratchenko, M.I. Biller, E.Z. Bytenko, P.A. Bocharov, V.A. Vereshchaka, V.N. Dovbnya, A.N. Duldya, S.V. Gorenko, Yu.V. Kovalev, G.G. Momot, V.A. Repihov, O.A. Romanovsky, S.K. Savchenko, A.N. Seleznev, V.V. Solodovnikov, V.I. Titov, V.I. Torgovkin, A.V. Handak, V.V. Shelepko, S.V. Tcebenko, G.N. Применение ускоренных пучков. детекторы и детектирование ядерных излучений The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors with the Supercritical Water-Cooling under irradiation. Specimens in water flow were irradiated in situ by the 10 MeV/10 kW electron beam of the LAE-10 linear accelerator. The high power relativistic electron-gamma irradiation delivers the absorbed doses sufficient for activation of corrosion and oxidation of material-coolant interfaces. The first results of the electron irradiation of Zr and Inconel 690 samples during 500 hours are gave. Надкритичний реактор з водяним охолодженням (SCWR) − одна з самих багатообіцяючих реакторних технологій в програмі реакторів IV покоління. З 2009 року в Харківському фізико-технічному інституті ведуться роботи, спрямовані на розвиток обладнання та методології для оцінки реакторних матеріалів, призначених для реакторів SCWR (проект УНТЦ - P4841). Спеціально розроблена в ХФТІ надкритична водяна конвекційна петля з камерою опромінення, зв’язана з прискорювачем електронів ЛП-10 (8…10 МеВ, до 10 кВт), дає можливість для дослідження корозії та механічних пошкоджень матеріалів після опромінення пучком електронів. Приводяться результати 500-годинного сеансу опромінення зразків цирконію та інконеля. Суперкритический водно-охлаждаемый реактор (SCWR) − одна из самых многообещающих реакторных технологий в программе реакторов IV поколения. С 2009 года в Харьковском физико-техническом институте ведутся работы, направленные на развитие оборудования и методологии для оценки реакторных материалов, предназначенных для реакторов SCWR (проект УНТЦ - P4841). Специально разработанная в ХФТИ суперкритическая водяная конвекционная петля с камерой облучения, связанная с ускорителем электронов ЛУ-10 (8…10 МэВ, до 10 кВт) предоставляет возможность для изучения коррозии и механических повреждений материалов при облучении пучком электронов. Приводятся результаты 500-часового сеанса облучения образцов циркония и инконеля. 2013 Article Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov, V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot, O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2013. — № 6. — С. 230-234. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 07.35.+k, 29.20.Ej, 28.52.Fa https://nasplib.isofts.kiev.ua/handle/123456789/112080 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускоренных пучков. детекторы и детектирование ядерных излучений
Применение ускоренных пучков. детекторы и детектирование ядерных излучений
spellingShingle Применение ускоренных пучков. детекторы и детектирование ядерных излучений
Применение ускоренных пучков. детекторы и детектирование ядерных излучений
Bakai, A.S.
Boriskin, V.N.
Bratchenko, M.I.
Biller, E.Z.
Bytenko, P.A.
Bocharov, V.A.
Vereshchaka, V.N.
Dovbnya, A.N.
Duldya, S.V.
Gorenko, Yu.V.
Kovalev, G.G.
Momot, V.A.
Repihov, O.A.
Romanovsky, S.K.
Savchenko, A.N.
Seleznev, V.V.
Solodovnikov, V.I.
Titov, V.I.
Torgovkin, A.V.
Handak, V.V.
Shelepko, S.V.
Tcebenko, G.N.
Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
Вопросы атомной науки и техники
description The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors with the Supercritical Water-Cooling under irradiation. Specimens in water flow were irradiated in situ by the 10 MeV/10 kW electron beam of the LAE-10 linear accelerator. The high power relativistic electron-gamma irradiation delivers the absorbed doses sufficient for activation of corrosion and oxidation of material-coolant interfaces. The first results of the electron irradiation of Zr and Inconel 690 samples during 500 hours are gave.
format Article
author Bakai, A.S.
Boriskin, V.N.
Bratchenko, M.I.
Biller, E.Z.
Bytenko, P.A.
Bocharov, V.A.
Vereshchaka, V.N.
Dovbnya, A.N.
Duldya, S.V.
Gorenko, Yu.V.
Kovalev, G.G.
Momot, V.A.
Repihov, O.A.
Romanovsky, S.K.
Savchenko, A.N.
Seleznev, V.V.
Solodovnikov, V.I.
Titov, V.I.
Torgovkin, A.V.
Handak, V.V.
Shelepko, S.V.
Tcebenko, G.N.
author_facet Bakai, A.S.
Boriskin, V.N.
Bratchenko, M.I.
Biller, E.Z.
Bytenko, P.A.
Bocharov, V.A.
Vereshchaka, V.N.
Dovbnya, A.N.
Duldya, S.V.
Gorenko, Yu.V.
Kovalev, G.G.
Momot, V.A.
Repihov, O.A.
Romanovsky, S.K.
Savchenko, A.N.
Seleznev, V.V.
Solodovnikov, V.I.
Titov, V.I.
Torgovkin, A.V.
Handak, V.V.
Shelepko, S.V.
Tcebenko, G.N.
author_sort Bakai, A.S.
title Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
title_short Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
title_full Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
title_fullStr Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
title_full_unstemmed Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
title_sort electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Применение ускоренных пучков. детекторы и детектирование ядерных излучений
url https://nasplib.isofts.kiev.ua/handle/123456789/112080
citation_txt Electron irradiation of the material samples of new generation nuclear reactors in the supercritical water convection loop / A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov, V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot, O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko // Вопросы атомной науки и техники. — 2013. — № 6. — С. 230-234. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bakaias electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT boriskinvn electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT bratchenkomi electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT billerez electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT bytenkopa electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT bocharovva electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT vereshchakavn electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT dovbnyaan electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT duldyasv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT gorenkoyuv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT kovalevgg electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT momotva electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT repihovoa electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT romanovskysk electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT savchenkoan electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT seleznevvv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT solodovnikovvi electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT titovvi electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT torgovkinav electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT handakvv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT shelepkosv electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT tcebenkogn electronirradiationofthematerialsamplesofnewgenerationnuclearreactorsinthesupercriticalwaterconvectionloop
AT bakaias opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT boriskinvn opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT bratchenkomi opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT billerez opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT bytenkopa opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT bocharovva opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT vereshchakavn opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT dovbnyaan opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT duldyasv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT gorenkoyuv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT kovalevgg opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT momotva opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT repihovoa opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT romanovskysk opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT savchenkoan opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT seleznevvv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT solodovnikovvi opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT titovvi opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT torgovkinav opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT handakvv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT shelepkosv opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT tcebenkogn opromínennâelektronamizrazkívmateríalívâdernihreaktorívnovogopokolínnâunadkritičníjvodâníjkonvekcíjníjpetlí
AT bakaias oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT boriskinvn oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT bratchenkomi oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT billerez oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT bytenkopa oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT bocharovva oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT vereshchakavn oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT dovbnyaan oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT duldyasv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT gorenkoyuv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT kovalevgg oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT momotva oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT repihovoa oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT romanovskysk oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT savchenkoan oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT seleznevvv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT solodovnikovvi oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT titovvi oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT torgovkinav oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT handakvv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT shelepkosv oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
AT tcebenkogn oblučenieélektronamiobrazcovmaterialovâdernyhreaktorovnovogopokoleniâvsverhkritičeskojvodânojkonvekcionnojpetle
first_indexed 2025-11-25T10:00:27Z
last_indexed 2025-11-25T10:00:27Z
_version_ 1849756051128188928
fulltext ISSN 1562-6016. ВАНТ. 2013. №6(88) 230 ELECTRON IRRADIATION OF THE MATERIAL SAMPLES OF NEW GENERATION NUCLEAR REACTORS IN THE SUPERCRITICAL WATER CONVECTION LOOP A.S. Bakai, V.N. Boriskin, M.I. Bratchenko, E.Z. Biller, P.A. Bytenko, V.A. Bocharov, V.N. Vereshchaka, A.N. Dovbnya, S.V. Duldya, Yu.V. Gorenko, G.G. Koval’ev, V.A. Momot, O.A. Repihov, S.K. Romanovsky, A.N. Savchenko, V.V. Selezn’ev, V.I. Solodovnikov, V.I. Titov, A.V. Torgovkin, V.V. Handak, S.V. Shelepko, G.N. Tcebenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: boriskin@kipt.kharkov.ua The design of the Supercritical Water Convection Loop with an irradiation chamber is described [1]. The plant makes possible to carry out simulation corrosion tests of potential structural materials for Generation IV reactors with the Supercritical Water-Cooling under irradiation. Specimens in water flow were irradiated in situ by the 10 MeV/10 kW electron beam of the LAE-10 linear accelerator. The high power relativistic electron-gamma irradia- tion delivers the absorbed doses sufficient for activation of corrosion and oxidation of material-coolant interfaces. The first results of the electron irradiation of Zr and Inconel 690 samples during 500 hours are gave. PACS: 07.35.+k, 29.20.Ej, 28.52.Fa INTRODUCTION The Supercritical Water-Cooled Reactor (SCWR) is one of the most promising nuclear technologies identi- fied for R&D under the Generation IV (GenIV) program [2]. At Atomic Energy of Canada Limited (AECL) the SCWR has been recognized as the next evolutionary step of CANDU technology and given a high priority status [3 - 5]. Diverse developments for the next genera- tion SCWRs are being currently carried out in Korea [6- 8], the U.S. [9, 10], Japan [11], Russia [12], and China [13]. Along with the Very High-Temperature Reactor (VHTR) and Molten Salt Reactor (MSR) systems of Generation IV roadmap [1], SCWR technologies (either CANDU or Super-WWER-related) may also be consid- ered as possible candidates for GenIV prospects of nu- clear power industry of Ukraine. Different construction materials are being consid- ered as candidates for the SCWR: austenitic and ferrit- ic/martensitic (F/M) stainless steels (SS), Ni-, Zr-, and Ti-based alloys, as well as innovative oxide dispersion strengthened (ODS) steels and alloys. Their corrosion rates and stress corrosion cracking (SCC) in pure SCW are being studied experimentally using SCW circulation loops (SCWCL) without irradiation. A comprehensive survey of current R&D can be found, e.g. [9]. Experi- ments at test SCWCL facilities [10, 14] provide us with valuable data on temperature and material composition dependencies of corrosion rate [9, 14] for various struc- tural materials, as well as on the impact of SCW chem- istry on corrosion kinetics of steels and alloys. Howev- er, this experience is insufficient for designing and con- struction of the SCWR since radiation effects are well known to affect corrosion behavior of materials. It should be emphasized that currently there are no exper- imental data on the corrosion and SCC of structural ma- terials in the SCW flows under irradiation. The sparse data available [9] are limited to the experiments with pre-irradiated samples. These experiments have defi- nitely shown that the temperature dependent rate of in- tergranular cracking of 304 and 316L stainless steels in SCW is increased considerably for samples subjected to prior irradiation by protons to the radiation damage dose of several dpa [9]. It strongly motivates further investi- gations of irradiation impact on SCW induced corro- sion. The corresponding test facilities are currently de- signed and commissioned, e.g., in the Irradiated Materi- al Testing Laboratory (IMTL) at the University of Michigan (U.S.A.) [15] where SCC of materials irradi- ated in reactors by neutrons and gamma quanta will be studied in SCW low-oxygen closed-loop circuit de- signed for 30 MPa/600°C operation. It is worth noting that high radioactivity of neutron irradiated specimens has necessitated the application of automated systems of samples handling and the use of hot cells for sample preparation and post-irradiation SEM tests of micro- structure. The radiation safety requirements make these experiments rather complicated and expensive. Never- theless, since in situ irradiation is out of the present time capabilities of the IMTL facility, the investigations of combined effects of SCW impact and neutron irradia- tion (that are expected to occur in SCWR environment) still remain impossible within the framework of these important developments. The irradiation induced impact of SCW radiolysis on flow control and instabilities, incl. transitions from sub- critical to supercritical state, is of great interest for SCWR R&D and can also influence the corrosion of structural materials. These issues require thorough stud- ies using dedicated experimental facilities [16] that offer combined exposure of samples to both SCW flow and irradiation. In 2009 the Canadian government provided funding to support collaborative activities between the NSC Kharkov Institute of Physics and Technology (KIPT) and their colleagues from AECL’s Chalk River Labora- tories aimed at the development of advanced experi- mental facilities and methodologies for the assessment of reactor materials recognized as promising candidates for SCW reactors. The advanced skills of KIPT experts in structural materials design and testing, along with experience in simulation of reactor in-pile irradiation using gamma, electron, and ion irradiation, will be em- ployed for SCWR candidate materials characteriza- tion.These activities are managed by the Science & ISSN 1562-6016. ВАНТ. 2013. №6(88) 231 Technology Centre in Ukraine (STCU) within the framework of the Canada-Ukraine partner project STCU #4841 “SCW Convection Loop for Materials Assess- ment for the Next Generation Reactors”. The Project goal is the design and construction of Canada-Ukraine Electron Irradiation Test Facility (CU-EITF) having a specially developed SCWCL with target test cell sub- jected to electron irradiation. After having been put into operation CU-EITF will be used for collaborative tests of structural materials for GenIII+ and GenIV reactors of the CANDU family (ACR, CANDU SCWCR). 1. THE SUPERCRITICAL WATER CONVECTION LOOP DESIGN The dimensions of the loop (1.2×1.5 m) and other component parts of SCWCL are essentially determined by the size and arrangement of the KIPT-sited bunker room, which houses the electron accelerator (Fig. 1). Fig. 1. The placement of the SCWCL in the LAE-10 bunker room A schematic representation of the major components of the CU-EITF design is shown in Fig. 2. It is concep- tually similar to various SCW natural and forced circu- lation loops that are currently operating and projected (see, e.g., [10, 14, 15]) but notably differs by the incor- poration of the electron linac LAE-10 and the appropri- ate irradiation cell (IC). All component parts of the SCWCL are designed for safe operation at temperatures up to 450°C (723 K) and pressures up to 25 MPa. The loop is made of stainless steel 12X18H10T and has an external pipe diameter 40 mm and wall thickness of 4 mm. It has two detacha- ble flange connections at the entrances to the irradiation cell and pump. The water is heated to a temperature above the critical point by the four-section external electric heater with a total power of up to 20 kW. Water circulation in the loop is due to natural convection, and can be adjusted by the influence of the 0.5 kW circulation pump. The upper part of the loop is cooled by a tubular cooler. Two versions of the SCWCL (with detachable flanges and all-welded) have been built. The experiment results with the all- welded SCWCL with four-channel irradiation cell (with- out recourse to the circulation pump) are given below. Fig. 2. Schematics of the CU-EITF design For chemical analysis and degassing, a small portion of water is discharged from the loop through the capillaries, valves and filter into the accumulation tank partially filled with nitrogen. The recirculation of the water back into the loop after degassing is provided by the high-pressure pump (HPLC). The operation of automatic valves and pumps is controlled by an Intel™ CPU based personal computer. For the protection of the elements of the de- gassing line from overheating, capillaries are cooled with special coolers to a temperature below 100°C. The control system is designed to provide routine measurements of pressure, flow rate and temperature at several points on the surface of the loop. The system regulates the supply of electric power in the heaters and controls the operation of pumps and valves. In case of an emergency, when the temperature and/or pressure of SCWCL components exceed the specified values, the control system disables the heaters, the linac beam cur- rent, and pumps. For extra protection of the loop, a me- chanical safety valve that prevents overpressure beyond 27 MPa is installed. The view of the accelerator bunker is made with the help of a video camera. The irradiation of specimens (as well as additional heating and ionization of the water) occurs in the irradi- ation cell CU-EITF. The cylindrical irradiation cell (IC) is an integral (but interchangeable) part of the CU-EITF SCWCL. Different ICs can be used in different simula- tion experiments depending upon the materials under investigation. Three kinds of the cylindrical IC are de- signed and produced (Figs. 3-6). The longitudinal size IC (310 mm) was determined by scanning system am- plitude of the linac on the frontal IC surface. Fig. 3. The design drawings (a) and 3D computer model (b) of the CU-EITF irradiation cell ISSN 1562-6016. ВАНТ. 2013. №6(88) 232 The thickness of the steel chamber front wall should be no more than 2 mm for the energy losses of the 10 MeV electron beam on the front surface IC were a minimum. At making of the IC cases from the titan al- loys which density is twice below of the steel density, the thickness of a face-to-face wall of the chamber should not be more than 4 mm. Fig. 4. The view of the one-channel irradiation cell The material cell is an alloy of titan VT22, the thickness of the cell wall – 4 mm, external diameter – 40 mm Fig. 5. The view of the four-channel irradiation cell. The material cell is stainless steel 12Х18Н10, the thickness of the cell wall – 2 mm, external pipe diameter – 14 mm Variant IC (see Fig. 5) with four-channel steel case without flanges (external pipe diameter – 14 mm, a wall thickness – 2 mm) has higher durability in comparison with IC (see Fig. 3). Reduction of the total area of inter- nal section of this IC allows receiving higher linear speeds of water moving along samples (see Fig. 6). Overlapping of a diagonal of section IC with an axis of a bunch creates the irradiation conditions at which samples in face-to-face tube IC test influence of water, primary beam electrons and gammas, and samples in a back tube practically are not irradiated by primary elec- trons at the same influence of water and gammas. Thus, such design IC allows estimating the primary electron contribution in destruction of an irradiated sample sur- face by corrosion (see Fig. 6). Fig. 6. The view of the consoles with the samples and the pipes of the four-channel irradiation cell 2. THE RESULTS OF THE SAMPLE IRRADIATION When used the all-welded SCWCL “Loop-1a” with the four-channel irradiation cell, the first time in the world it was possible to receive the irradiation results of the Inconel 690 and Zr samples by electrons. The sam- ples are irradiated at a pressure of 23.5 MPа and a tem- perature below 380ºС. The total session duration was 574 hours (including 497 hours with the electron beam), the maximum fluence on the irradiation cell surface was 1020 el/cm2. The operating schedule SCWCL “Loop-1a” is shown in Fig. 7. tT, tIp - Loop-1a. 0 5 10 15 20 25 14 .0 7. 20 12 16 .0 7. 20 12 18 .0 7. 20 12 20 .0 7. 20 12 22 .0 7. 20 12 24 .0 7. 20 12 26 .0 7. 20 12 28 .0 7. 20 12 30 .0 7. 20 12 01 .0 8. 20 12 03 .0 8. 20 12 05 .0 8. 20 12 07 .0 8. 20 12 09 .0 8. 20 12 11 .0 8.2 01 2 13 .0 8. 20 12 15 .0 8. 20 12 17 .0 8. 20 12 19 .0 8. 20 12 21 .0 8.2 01 2 23 .0 8. 20 12 25 .0 8. 20 12 t( h r) tT(hr) tIp(hr) Fig. 7. The total operating time (tT) of the Loop 1a including the time with the electron beam (tIp). July-August, 2012 During the simulation experiments the irradiation cell CU-EITF was exposed to the electron beam of the LAE10 with the energy 10…11 MeV and the scanning frequency along the irradiation cell 3 Hz. The average electron beam current was below 1 mA. The electron beam impulse frequency was 250 Hz. The duration of the impulse was 3.4 µs. Average power of the accelera- tor electron beam is equal 7 kW at a long operating schedule. Actual parameters of long irradiation sessions can differ a little from designated above nominal pa- rameters, they are checked by the automatic monitoring system of the linear accelerator. Fig. 8. The characteristic form of a electron energy spectrum of the accelerator LAE-10 in KIPT and the characteristic of distribution density of the scanned electron beam on the surface IC For example, the 10 MeV energy spectrum, meas- ured during experiment, is represented in a Fig. 8. It has the most probable energy 9.6 MeV with the long tail which has been stretched up to 13 MeV. The loop was filled with water with average parame- ters pH = 6.5, conductivity 7…11 µS/cm, oxygen ppb = 0.5. Water from a loop acted with rate of 5 ml/mines. Time of delivery of tests on a 30-meter wa- ter-main was 5 hours. Parameters of water were pH = 5.3…6, conductivity 7…23 µS/cm, oxygen ISSN 1562-6016. ВАНТ. 2013. №6(88) 233 ppb = 3…4 on an output from a water-main. After de- contamination water came back in the loop. The gain of conductivity was about 0.1 µS/cm at one hour, i.e. the salt amount in water increased. At carrying out of the element chemical analysis of structure of tests of water by means of spectrometer ICPE-9000 of firm “Sumadzo” it is established, that practically at all tests of water from a loop there is a chrome (8…54 µg/l) and there is no zirconium. The isotope structure of samples after an irradiation is resulted in Table. Samples Isotops half-life period) Zr Zr89(78 h), Zr95(64 d), Nb92(10 d), Nb95(64 d), Nb95m(86 h) Inconel 690 Cr51(27 d), Mn54(312 d), Co57(273 d), Co58(70 d), Nb92 Steel 12Х18Н10Т cases Cr51, Mn54, Co57, Co58 CONCLUSIONS Supercritical Water Convection Loop (SCWCL) with the irradiation cell, connected with the electron accelerator LAE-10 (10 MeV energy, below 10 kW power), was developed specially. Rather short time of the creation of the plant and low cost (in the comparison with nuclear reactors) and an opportunity to investigate the irradiated materials from hot chambers do the of- fered technique of imitating experiments by very effec- tive tool for obtaining of the necessary data to choose the materials for active zone SCWR. The basic results: • For the first time the Supercritical Water Convection Loop with the four-channel irradiation cell from the steel, filled by the samples of two types (from the Inconel 690 alloy with double-layer fusing from the In 52MSS wire and from the Zr alloy), was success- fully tested on an electron irradiation. The total ses- sion duration was 574 hours (including 497 hours with the electron beam), the maximum fluence on the irradiation cell surface was 1020 el/cm2. Operat- ing mode of a loop – Р = 23.5 MPа, the maximal temperature on a irradiation cell surface up to 380ºС. • During sessions of an irradiation the maximal gain of weight on Zr samples is 0.75 mg/cm2, and on In- conel 690 samples is 1.5 mg/cm2 as a result of cor- rosion. • During an irradiation parameters of water from a loop changed within the limits of: pH – 5.3…6, con- ductivity – 7…23 µS/cm, oxygen ppb – 3…4. • Change of water conductivity in the loop during the irradiation was neaby 0.1 µS/cm at one hour, i.e. the impurity quantity in water was increased. • In particular the increase Cr amount in water for the same period was about 0.1 µg/l at at one hour. REFERENCES 1. A.S. Bakai, V.N. Boriskin, A.N. Dovbnya, S.V. Dyuldya, and D.A. Guzonas. Supercritical water convection loop (NSC KIPT) for materials assess- ment for the next generation reactors // Proc. The 5th Int. Sym. SCWR (ISSCWR-5). Vancouver, Cana- da, March 13-16, 2011. 2. U.S. DOE nuclear energy research advisory commit- tee and the Generation IV international forum, A Technology Roadmap for Generation IV Nuclear Energy Systems, GIF-002-00, (December 2002). 3. R.B. Duffey, H.F. Khartabil, I.L Pioro, J.M. Hopwood. The future of nuclear: SCWR Gen- eration IV high performance channels // Proc. of the 11th Int. Conf. on Nuclear Engineering (ICONE-11). Shinjuku, Tokyo, Japan, April 20-23, 2003, Paper № 36222, 8 pages. 4. K.P. Boyle, D. Brady, D. Guzonas, H. Khartabil, L. Leung, J. Lo, S. Quinn, S. Suppiah, W. Zheng. Canada’s Generation IV national program – over- view // Proc. of 4th Int. Symposium on Supercritical Water-Cooled Reactors. March 8-11, 2009, Heidel- berg, Germany, Paper № 74, 13 p. 5. M. Naidin, I. Pioro, U. Zirn, S. Mokry, G. Naterer. Supercritical water-cooled NPPs with co-generation of hydrogen: general layout and thermodynamic- cycles options // ibid. Paper № 78, 11 p. 6. Y.-Y. Bae, J. Jang, H.-Y. Kim, H.-Y. Yoon, H.-O. Kang, K.-M. Bae. Research activities on a supercritical pressure water reactor in Korea // Nuclear Engineer- ing and Technology. 2007, v. 39, № 4, p. 273-286. 7. S.-Y. Hong, K. Lee, S.-M. Bae, Y.-B. Kim, Y.-Y. Bae. Interim results of SCWR development feasibility study in Korea // Proc. of 4th Int. Symposium on Su- percritical Water-Cooled Reactors. March 8-11, 2009, Heidelberg, Germany, Paper № 50, 6 p. 8. Y.Y. Bae, H.Y. Kim, J.H. Kwon, S.M. Bae, K. Lee, Y.B. Kim, S.Y. Hong. Update on the SCWR re- search in Korea // ibid. Paper № 52, 8 p. 9. G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister. Corrosion and stress cor- rosion cracking in supercritical water // Journal of Nuclear Materials. 2007, v. 371, p. 176-201. 10. M.H. Anderson, J.R. Licht, M.L. Corradini. Progress on the University of Wisconsin super-critical water heat transfer facility // Proc. of the 11th Int. Topical on Nuclear Reactor Thermal-Hydraulics (NURETH 11). Avignon, France, October 2-6, 2005, paper 265. 11. Y. Ishiwatari, Y. Oka, K. Yamada. Japanese R&D projects on pressure-vessel type SCWR // Proc. of 4th Int. Symposium on Supercritical Water-Cooled Reactors. March 8-11, 2009, Heidelberg, Germany, Paper № 73, 9 p. 12. Yu.D. Barnayev, P.L. Kirillov, V.M. Poplavskij, V.N. Sharapov. Nuclear reactors based on super- critical pressure water // Atomic Energy. 2004, v. 96, № 5, p. 374-380. 13. X. Cheng, R&D activities on SCWR in China // Proc. of 4th Int. Symposium on Supercritical Water- Cooled Reactors. March 8-11, 2009, Heidelberg, Germany, Paper № 53, 14 p. 14. S.S. Hwang, B.H. Lee, J. G. Kim, J. Jang. SCC and corrosion evaluations of the F/M steels for a super- critical water reactor // Journal of Nuclear Materi- als. 2008, v. 372, p. 177-181. ISSN 1562-6016. ВАНТ. 2013. №6(88) 234 15. S. Teysseyre, Q. Peng, C. Becker, G.S. Was. Facility for stress corrosion cracking of irradiated specimens in supercritical water // Journal of Nuclear Materi- als. 2007, v. 371, p. 98-106. 16. P. Hajek, R. Vsolak, M. Ruzickova. First experience with operating the supercritical water loop // Proc. of 4th Int. Symposium on Supercritical Water-Cooled Reactors. March 8-11, 2009, Heidelberg, Germany, Paper № 69, 10 page. Article received 25.09.2013 ОБЛУЧЕНИЕ ЭЛЕКТРОНАМИ ОБРАЗЦОВ МАТЕРИАЛОВ ЯДЕРНЫХ РЕАКТОРОВ НОВОГО ПОКОЛЕНИЯ В СВЕРХКРИТИЧЕСКОЙ ВОДЯНОЙ КОНВЕКЦИОННОЙ ПЕТЛЕ А.С. Бакай, В.Н. Борискин, М.И. Братченко, Е.З. Биллер, П.А. Бутенко, В.А. Бочаров, В.Н. Верещака, А.Н. Довбня, С.В. Дюльдя, Ю.В. Горенко, Г.Г. Ковалев, В.А. Момот, О.А. Репихов, С.К. Романовский, А.Н. Савченко, В.В. Селезнев, В.И. Солодовников, В.И. Титов, А.В. Торговкин, В.В. Хандак, С.В. Шелепко, Г.Н. Цебенко Суперкритический водно-охлаждаемый реактор (SCWR) − одна из самых многообещающих реакторных технологий в программе реакторов IV поколения. С 2009 года в Харьковском физико-техническом институ- те ведутся работы, направленные на развитие оборудования и методологии для оценки реакторных матери- алов, предназначенных для реакторов SCWR (проект УНТЦ - P4841). Специально разработанная в ХФТИ суперкритическая водяная конвекционная петля с камерой облучения, связанная с ускорителем электронов ЛУ-10 (8…10 МэВ, до 10 кВт) предоставляет возможность для изучения коррозии и механических повре- ждений материалов при облучении пучком электронов. Приводятся результаты 500-часового сеанса облуче- ния образцов циркония и инконеля. ОПРОМІНЕННЯ ЕЛЕКТРОНАМИ ЗРАЗКІВ МАТЕРІАЛІВ ЯДЕРНИХ РЕАКТОРІВ НОВОГО ПОКОЛІННЯ У НАДКРИТИЧНІЙ ВОДЯНІЙ КОНВЕКЦІЙНІЙ ПЕТЛІ О.С. Бакай, В.М. Борискін, М.І. Братченко, Є.З. Біллер, П.А. Бутенко, В.О. Бочаров, В.М. Верещака, А.М. Довбня, С.В. Дюльдя, Ю.В. Горенко, Г.Г. Ковальов, В.О. Момот, О.О. Репихов, С.К. Романовський, А.М. Савченко, В.В. Селезньов, В.І. Солодовніков, В.І. Тітов, О.В. Торговкін, В.В. Хандак, С.В. Шелепко, Г.М. Цебенко Надкритичний реактор з водяним охолодженням (SCWR) − одна з самих багатообіцяючих реакторних технологій в програмі реакторів IV покоління. З 2009 року в Харківському фізико-технічному інституті ве- дуться роботи, спрямовані на розвиток обладнання та методології для оцінки реакторних матеріалів, приз- начених для реакторів SCWR (проект УНТЦ - P4841). Спеціально розроблена в ХФТІ надкритична водяна конвекційна петля з камерою опромінення, зв’язана з прискорювачем електронів ЛП-10 (8…10 МеВ, до 10 кВт), дає можливість для дослідження корозії та механічних пошкоджень матеріалів після опромінення пучком електронів. Приводяться результати 500-годинного сеансу опромінення зразків цирконію та інконеля. ELECTRON IRRADIATION of the MATERIAL SAMPLES OF NEW GENERATION NUCLEAR REACTORS in the SUPERCRITICAL WATER CONVECTION LOOP Introduction 1. THE Supercritical Water Convection Loop DESIGN Fig. 6. The view of the consoles with the samples and the pipes of the four-channel irradiation cell 2. the results of the sample irradiation CONCLUSiONS REFERENCES Облучение электронами образцов материалов ядернЫх реакторов нового поколения в сверхкритической водяной конвекционной петле ОПромінення Електронами ЗРАЗКІв матеріалів ядерних реакторів нового покоління У НАДкритичНІй водянІй конвекцІЙнІй петлІ