Anisotropy of radiation from dense plasma of multiply ionized atoms

It has been study the formation of anisotropic extreme ultraviolet radiation from the plasma of multiply ionized atoms. The mean free path of quantum in dense plasma has been estimated. The critical current for formatting anisotropic radiation in the tin ion plasma has been obtained. The dependences...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Hrechko, Ya.O., Azarenkov, N.A., Babenko, Ie.V., Raybchikov, D.L., Vusyk, N.N., Tseluyko, A.F.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/112239
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Anisotropy of radiation from dense plasma of multiply ionized atoms / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Raybchikov, N.N. Vusyk, A.F. Tseluyko // Вопросы атомной науки и техники. — 2015. — № 4. — С. 32-35. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112239
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1122392025-02-09T15:31:26Z Anisotropy of radiation from dense plasma of multiply ionized atoms Анізотропія випромінювання в щільній плазмі багаторазово іонізованих атомів Анизотропия излучения в плотной плазме многократно ионизированных атомов Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Raybchikov, D.L. Vusyk, N.N. Tseluyko, A.F. Нерелятивистская электроника It has been study the formation of anisotropic extreme ultraviolet radiation from the plasma of multiply ionized atoms. The mean free path of quantum in dense plasma has been estimated. The critical current for formatting anisotropic radiation in the tin ion plasma has been obtained. The dependences of the radiation directivity coefficient on the plasma parameters have been derived. Вивчається формування анізотропного випромінювання в діапазоні екстремального вакуумного ультрафіолету з плазми багаторазово іонізованих атомів олова. Наводяться оцінки довжини вільного пробігу кванта в щільній плазмі багатозарядних іонів. Визначено критичний струм формування анізотропного випромінювання в плазмі іонів олова. Отриманo залежності коефіцієнта спрямованості випромінювання від параметрів плазми. Изучается формирование анизотропного излучения в диапазоне экстремального вакуумного ультрафиолета из плазмы многократно ионизированных атомов олова. Приводятся оценки длины свободного пробега кванта в плотной плазме многозарядных ионов. Определен критический ток формирования анизотропного излучения в плазме ионов олова. Получены зависимости коэффициента направленности излучения от параметров плазмы. 2015 Article Anisotropy of radiation from dense plasma of multiply ionized atoms / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Raybchikov, N.N. Vusyk, A.F. Tseluyko // Вопросы атомной науки и техники. — 2015. — № 4. — С. 32-35. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.20.-j, 52.50.Dg https://nasplib.isofts.kiev.ua/handle/123456789/112239 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Нерелятивистская электроника
Нерелятивистская электроника
spellingShingle Нерелятивистская электроника
Нерелятивистская электроника
Hrechko, Ya.O.
Azarenkov, N.A.
Babenko, Ie.V.
Raybchikov, D.L.
Vusyk, N.N.
Tseluyko, A.F.
Anisotropy of radiation from dense plasma of multiply ionized atoms
Вопросы атомной науки и техники
description It has been study the formation of anisotropic extreme ultraviolet radiation from the plasma of multiply ionized atoms. The mean free path of quantum in dense plasma has been estimated. The critical current for formatting anisotropic radiation in the tin ion plasma has been obtained. The dependences of the radiation directivity coefficient on the plasma parameters have been derived.
format Article
author Hrechko, Ya.O.
Azarenkov, N.A.
Babenko, Ie.V.
Raybchikov, D.L.
Vusyk, N.N.
Tseluyko, A.F.
author_facet Hrechko, Ya.O.
Azarenkov, N.A.
Babenko, Ie.V.
Raybchikov, D.L.
Vusyk, N.N.
Tseluyko, A.F.
author_sort Hrechko, Ya.O.
title Anisotropy of radiation from dense plasma of multiply ionized atoms
title_short Anisotropy of radiation from dense plasma of multiply ionized atoms
title_full Anisotropy of radiation from dense plasma of multiply ionized atoms
title_fullStr Anisotropy of radiation from dense plasma of multiply ionized atoms
title_full_unstemmed Anisotropy of radiation from dense plasma of multiply ionized atoms
title_sort anisotropy of radiation from dense plasma of multiply ionized atoms
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Нерелятивистская электроника
url https://nasplib.isofts.kiev.ua/handle/123456789/112239
citation_txt Anisotropy of radiation from dense plasma of multiply ionized atoms / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Raybchikov, N.N. Vusyk, A.F. Tseluyko // Вопросы атомной науки и техники. — 2015. — № 4. — С. 32-35. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT hrechkoyao anisotropyofradiationfromdenseplasmaofmultiplyionizedatoms
AT azarenkovna anisotropyofradiationfromdenseplasmaofmultiplyionizedatoms
AT babenkoiev anisotropyofradiationfromdenseplasmaofmultiplyionizedatoms
AT raybchikovdl anisotropyofradiationfromdenseplasmaofmultiplyionizedatoms
AT vusyknn anisotropyofradiationfromdenseplasmaofmultiplyionizedatoms
AT tseluykoaf anisotropyofradiationfromdenseplasmaofmultiplyionizedatoms
AT hrechkoyao anízotropíâvipromínûvannâvŝílʹníjplazmíbagatorazovoíonízovanihatomív
AT azarenkovna anízotropíâvipromínûvannâvŝílʹníjplazmíbagatorazovoíonízovanihatomív
AT babenkoiev anízotropíâvipromínûvannâvŝílʹníjplazmíbagatorazovoíonízovanihatomív
AT raybchikovdl anízotropíâvipromínûvannâvŝílʹníjplazmíbagatorazovoíonízovanihatomív
AT vusyknn anízotropíâvipromínûvannâvŝílʹníjplazmíbagatorazovoíonízovanihatomív
AT tseluykoaf anízotropíâvipromínûvannâvŝílʹníjplazmíbagatorazovoíonízovanihatomív
AT hrechkoyao anizotropiâizlučeniâvplotnojplazmemnogokratnoionizirovannyhatomov
AT azarenkovna anizotropiâizlučeniâvplotnojplazmemnogokratnoionizirovannyhatomov
AT babenkoiev anizotropiâizlučeniâvplotnojplazmemnogokratnoionizirovannyhatomov
AT raybchikovdl anizotropiâizlučeniâvplotnojplazmemnogokratnoionizirovannyhatomov
AT vusyknn anizotropiâizlučeniâvplotnojplazmemnogokratnoionizirovannyhatomov
AT tseluykoaf anizotropiâizlučeniâvplotnojplazmemnogokratnoionizirovannyhatomov
first_indexed 2025-11-27T10:21:55Z
last_indexed 2025-11-27T10:21:55Z
_version_ 1849938591776505856
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 32 ANISOTROPY OF RADIATION FROM DENSE PLASMA OF MULTIPLY IONIZED ATOMS Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Raybchikov, N.N. Vusyk, A.F. Tseluyko V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: ievgeniia.borgun@mail.ru It has been study the formation of anisotropic extreme ultraviolet radiation from the plasma of multiply ionized atoms. The mean free path of quantum in dense plasma has been estimated. The critical current for formatting aniso- tropic radiation in the tin ion plasma has been obtained. The dependences of the radiation directivity coefficient on the plasma parameters have been derived. PACS: 52.20.-j, 52.50.Dg The work associated with the development of plas- ma sources of extreme ultraviolet radiation on the basis of high-current discharges. The main challenges to the creation of the plasma source are a low conversion rate of external electrical energy into radiation energy and a strong destruction of the radiation focus system by the discharge products. In [1] it was shown that one of the possible solutions of these problems is the use of direc- tional radiation generated in a pulsed high-current diode with a limited surface of the potential electrode. As shown in [2], for the efficient collection of radiation it is necessary to select the optimum location and configura- tion of the collecting mirror, taking into account the radiation direction. This work is devoted to the defini- tion of functional dependencies of the radiation from the plasma parameters. MATERIAL IS LOCATED AS FOLLOWS An analysis of the experimental data, obtained earli- er by the authors, can explain the mechanism of intense directional radiation peaks using the following phenom- enological physical model. The model assumes that at any point of the radiating volume is generated by the primary photon, which is distributed in a random direc- tion. On a mean free path λ in the interaction with the ion capture an electron the primary radiation photon induces secondary photon in the same direction (radia- tion-induced effect). Second quantum together with the primary again induces at the length of λ new photons in the same direction. Avalanche increased flow comes to the boundary of the radiating volume. To simplify the calculations it was used a simple model of a homogeneous radiating volume in the form of a cylinder of length L and diameter D. Schematic representation of the physical model of the radiating volume is shown in Fig. 1. One of the main elements in a phenomenological model of the formation of directional stimulated emis- sion is the mean free path λ of the quantum in plasma. To assess its value, it can be used the approach pro- posed in [3]. In this paper is given an expression for the quantum mean free path in the dense plasma of multiply ionized atoms. The calculations have been performed for the case when the dense plasma forms a plasma pinch with a radius determined from the condition of equality the surface radiation losses and plasma ohmic heating Fig. 1. Schematic representation of the phenomenological physical model. Ls and Ds – the length and diameter of a homogeneous radiating volume; Nsl, Nsr и Nsf – the number of partitions, respectively, the length, radius and azimuth angle into elementary cells ( ) ( )eqJeq rQrQ =3 . (1) Equating the loss of the line emission of plasma col- umn lineQ to Joule heating JQ the authors have ob- tained the critical current for heavy ion plasma Jline QQ = 3 4 214 , kÀe ef cr n T Z I Z = ⋅ . (2) It is shown that at the electron temperature Те the average energy of photons leaving the plasma is about ( )1...2 .eE Tν ≅ ⋅ (3) An approximate expression for the mean free path of the quantum in plasma has been obtained 3 3 13 13 10 , cmef e e n Z T n Zνλ ≅ ⋅ . (4) At the Fig. 2 it have been shown the results of calcu- lation of the dependence of the reduced mean free path of quantum λν⋅10–16ne of the electron temperature Te for different effective charges of ions Zef. Taking into account the criterion of the Bennett equilibrium (balance between a radial plasma pressure and the pressure of the magnetic field of the current) the mean free path can be rewritten as 2 3 5 3 27,5 10 , сm,pc ef e B n d Z T ZIνλ −≅ ⋅ ⋅ (5) Ls ∅ D s Nsl Nsf N sr hν ISSN 1562-6016. ВАНТ. 2015. №4(98) 33 where it is considered that iefe nZn = , and at efefef ZZZ ≈+>> 1,1 . 0 10 20 30 40 50 1E-3 0.01 0.1 1 10 1211 5 4 10 98 6 7 λ ν 1 0-1 6 n e , с m -2 Te, eV Zef=2 3 Fig. 2. Dependence of the reduced mean free path of quantum in a dense plasma λν⋅10–16ne of the electron temperature Te for different effective charges of ions Zef Using cylindrical rod electrode with diameter da with isolated lateral surface (so that the current flows only through the end of the electrode) the expression for the mean free path of quantum can be written, express- ing ne through the discharge current I. Assuming a uniform current density distribution over the cross section of the electrode the value I can be written as 44 1 2 a ae dvenI π ⋅= , (6) where e e a m Tv π 8 = – the average arithmetic velocity of plasma electrons. Then, 212 1 106,18 116 ae e e d I T m e n ⋅⋅ ⋅⋅ ⋅⋅= −π . (7) The multiplier 1.6⋅10–12 in the denominator of the radicand emerged from the fact that Те in eV is substi- tuted in the same way as in (4). Substituting (7) into (4) we can write a A a n ef e dd Z Z TI ⋅      ⋅⋅= − νλ 3 2310175,4 , (8) where Zef – an effective ion charge; Zn – the ion atomic number; I – discharge current (kА); Тe – the plasma electron temperature (eV); da – an electrode diameter (cm); λνА – the mean free path of quantum in plasma (cm) determined throw the electrode diameter The expression 8 evaluates the minimum current when the directional radiation peak appearances for the electrode diameter da. From a physical model of direc- tional stimulated radiation it can be seen that for format- ting the significant radiation directivity must be 2ad<νλ . Therefore, as the threshold value it can be taken 2~νλad . Further calculation has been performed for tin, which Zn = 50. The formation of radiation with a wave- length of 13.5 nm is observed for tin ion with ionization degree from 6 to 12. Therefore it has been taken the minimum value of the ionization degree Zef = 6. The energy of photons with a wavelength of 13.5 nm is Еν = 92 eV, which corresponds to the value Те = Еν /3, i.e. Те ≈ 30 eV, which agrees well with the literature [4, 5]. Under these assumptions for the electrode diameter of 0.5 cm the minimum current value at which there will be a directional radiation is Imin = 7.8 kА, that is in good agreement with the experimental data. According to the expression 8 the mean free path of quantum in plasma λνА is defined as n eefa A Z TZ I d 432 310175,4 ⋅⋅⋅= − νλ . (9) Dependences of the mean free path of a quantum in plasma on the discharge current I in case the criterion. Fig. 3. The dependences of the mean free path of a quantum λν (а) of the discharge current I: λνВ – under the condition Bennett; λνА – for a uniform current distribution over the electrode cross section; Zn = 50, Zef = 6, Те ≈ 30 eV Bennett λνВ(I) applied or a uniform current distribu- tion over the entire electrode cross section λνА(I) are shown in Fig. 3. The dependences corresponds to the case where the equilibrium diameter of plasma column equals to the electrode diameter, Zn = 50; Zef = 6; Те ≈ 30 eV. According to Fig. 3, at reducing electrode diameter da the mean free path of quantum in plasma decreases. In addition, calculated with the help of expression 5 and 9 the mean free paths of the quantum into plasma for the same parameters have the different functional depend- 0 10 20 30 40 1E-3 0.01 0.1 1 10 λνA, dа= 0,15 сm λνA, dа= 0,25 сm λνA, dа= 0,5 сm λ ν , с m I, кА λνB, dpc= 0,5 сm λνA, dа= 0,5 сm λνB, dpc= 0,25 сm λνA, dа= 0,25 сm λνB, dpc= 0,15 сm λνA, dа= 0,15 сm ISSN 1562-6016. ВАНТ. 2015. №4(98) 34 ences of the discharge current I. Under the Bennett cri- terion − it's inverse square law, and in the case of a uni- form current distribution over the entire electrode cross section − an inverse relationship. From a phenomenological model of the directional stimulated radiation, which is based on increased inten- sity of radiation on the mean free path of quantum into plasma λν, it has been found that for the directional ra- diation it is necessary that the size of the emitting area d is significantly bigger than λν . d >> λν . (10) Taking into account the condition 10, for the case of the directional radiation generation the expressions for the discharge current for the two cases can be written as follows: 3 5 2 48.66 10 ef e B pc n Z T I I d Z −>> = ⋅ ⋅ ⋅ , (11) 3 4 34.175 10 ef e A a n Z T I I d Z −>> = ⋅ ⋅ ⋅ . (12) Fig. 4 shows the dependences of the critical current I for generating directional radiation in the plasma of multiply ionized tin atoms on the electron temperature Те for ionization degrees Zef = 6 и 12 for the rod elec- trode diameter of 0.15 cm. The dependences ZБ ef corre- spond to the critical currents derived from the expres- sion 11 for the case of equality of the plasma gas-kinetic pressure and the magnetic field pressure of its own cur- rent (Bennett criterion). The lines Zef show the depend- ences of the critical current obtained from the expres- sion 12, which corresponds to a uniform current distri- bution over the electrode cross section. Using estimates of the mean free path for a uniform current distribution over the electrode cross section, based on the proposed phenomenological physical mod- el, the dependences of the radiation directivity coeffi- cient for 13.5 nm wavelength on the tin plasma parame- ters have been obtained. Under directivity coefficient α is supposed the ratio of the longitudinal component of the radiation intensity the transverse one with respect to discharge axis, so α = 1 is corresponded to the case of isotropic radiation registration. The dependence of the directivity coefficient α on plasma density for different ratios of plasma pinch length and its diameter is shown in Fig. 5. According to Fig. 5 at the plasma density of about 3·1016 сm-3 the radiation directivity drops sharply to 1. If the plasma density increases the longitudinal directivity will greatly amplify. The calculations assumed that the plasma pinch diameter is determined by the rod electrode diameter and for this dependence it was 0.25 cm. Designing the plasma source it is important to know the effect of electrode diameter on the formation of ani- sotropic radiation. Therefore at the Fig. 6 it is shown the dependence of the directivity coefficient α on plasma density for different electrode diameters. Dependencies plotted for the case when the plasma pinch length is in two times more than its diameter Lpl/da = 2. 0 10 20 30 40 50 0 5 10 I, кА Te, eV Zef= 6 ZБ ef= 6 ZБ ef= 12 Zef= 12 Fig. 4. The dependence of the critical currents of the generation of directional radiation I in the plasma of multiply ionized tin atoms on the electron temperature Те and the ionization degrees Zef for rod electrode with diameter of 0.15 cm 1017 1 10 100 dа=0.25 cm α npl, сm -3 Lpl /dа=0.4 Lpl /dа=0.8 Lpl /dа=1.2 Lpl /dа=2 Lpl /dа=3.2 Lpl /dа=4 Lpl /dа=6.4 Lpl /dа=8 Fig. 5. The dependence of the radiation directivity on plasma density for different ratios of plasma pinch length and its diameter using electrode with diameter of 0.25 cm According to Fig. 6, at the same values of the plas- ma density, using the electrode of larger diameter it can greatly amplify the radiation directivity. For example, at the plasma density of 7·1017 сm-3 if the electrode diame- ter da is being increased in 10 times, the longitudinal directivity is amplified in 20 times. ISSN 1562-6016. ВАНТ. 2015. №4(98) 35 1017 1 10 da =1 cm da =0.5 cm da =0.25 cm da =0.1 cm α npl , сm -3 Lpl /da = 2 Fig. 6. The dependence of the radiation directivity on plasma density for different electrodes diameters at a ratio of plasma pinch length to its diameter Lpl/da = 2 CONCLUSIONS Thus, the estimations of the mean free path of quan- tum with 13.5 nm wavelength in the dense plasma of multiply ionized tin atoms have been carried out. The evaluative formulas of critical discharge current which corresponds to the case of the directional radiation forming in plasma diodes with rod electrodes, which side surface is closed by insulator, and to implementa- tion of equilibrium condition of plasma pinch have been given. The dependencies of the radiation directivity on the plasma density for different ratios of plasma pinch length to its diameter and the pinch diameter to the mean free path have been established. It has been shown that controlling the external discharge parameters such as the electrodes diameter, the power introduced into the discharge, the transverse magnetic field value, can be set the necessary radiation directivity. REFERENCES 1. A.F. Tseluyko, V.T. Lazurik, D.L. Ryabchikov, Ie. Borgun, I.N. Sereda, D.V. Zinov`ev. Directivity of superradiation from plasma of high-current pulse plasma diode // Problems of Atomic Science and Technology. Series “Plasma Electronics and the New Methods of Acceleration”. 2010, №4, p. 66-69. 2. Ie.V. Borgun et al. Optimization of the collecting mirror location in extreme ultraviolet plasma source // Problems of Atomic Science and Technology. Se- ries “Plasma Physics” (21). 2015, №1, p. 174-176. 3. E.V. Aglitskiy, А.V. Vihrov, А.V. Gulov, et al. Spectroscopy of multiple charge ions in hot plasma. Moscow: “Science”. 1991, 206 p. 4. M. Masnavi, M. Nakajima, E. Hotta, K. Horioka, G. Niimi, A. Sasaki. Estimation of optimum density and temperature for maximum efficiency of tin ions in Z discharge extreme ultraviolet sources // Journal Of Applied Physics. 2007, Issue 101, p. 033306(9). 5. A. Di Cicco, K. Hatada, E. Giangrisostomi, R. Gunnella, F. Bencivenga, E. Principi, C. Masciovecchio, A. Filipponi. Interplay of elec- tron heating and saturable absorption in ultrafast ex- treme ultraviolet transmission of condensed matter // Phys. Rev B. 2014, Issue 90, p. 220303(R). Article received 29.04.2015 АНИЗОТРОПИЯ ИЗЛУЧЕНИЯ В ПЛОТНОЙ ПЛАЗМЕ МНОГОКРАТНО ИОНИЗИРОВАННЫХ АТОМОВ Я.О. Гречко, Н.А. Азаренков, Е.В. Бабенко, Д.Л. Рябчиков, Н.Н. Вусык, A.Ф. Целуйко Изучается формирование анизотропного излучения в диапазоне экстремального вакуумного ультрафио- лета из плазмы многократно ионизированных атомов олова. Приводятся оценки длины свободного пробега кванта в плотной плазме многозарядных ионов. Определен критический ток формирования анизотропного излучения в плазме ионов олова. Получены зависимости коэффициента направленности излучения от пара- метров плазмы. АНІЗОТРОПІЯ ВИПРОМІНЮВАННЯ В ЩІЛЬНІЙ ПЛАЗМІ БАГАТОРАЗОВО ІОНІЗОВАНИХ АТОМІВ Я.О. Гречко, М.О. Азарєнков, Є.В. Бабенко, Д.Л. Рябчіков, М.М. Вусик, О.Ф. Целуйко Вивчається формування анізотропного випромінювання в діапазоні екстремального вакуумного ультра- фіолету з плазми багаторазово іонізованих атомів олова. Наводяться оцінки довжини вільного пробігу кван- та в щільній плазмі багатозарядних іонів. Визначено критичний струм формування анізотропного випромі- нювання в плазмі іонів олова. Отриманo залежності коефіцієнта спрямованості випромінювання від параме- трів плазми. Material is located as follows Conclusions references анизотропия излучениЯ в плотной плазме многократно ионизированных атомов Анізотропія ВИПРОМІНЮВАННЯ В ЩІЛЬНІЙ плазмі БАГАТОРАЗОВО іонізованих АТОМІВ