Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality

Carbon distribution in the as-quenched Fe—C martensite obtained after cooling down to 4.5 K is studied using Mössbauer spectroscopy. The location of carbon atoms in the one of three available sublattices of octahedral interstitial sites is established, whereas the partial occupation by carbon atoms...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Gavriljuk, V.G., Firstov, S.O., Sirosh, V.A., Tyshchenko, A.I., Mogilny, G.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2016
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/112501
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality / V. G. Gavriljuk, S. O. Firstov, V. A. Sirosh, A. I. Tyshchenko, and G. S. Mogilny // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 4. — С. 455-475. — Бібліогр.: 67 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-112501
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1125012025-02-23T17:03:22Z Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality Розподіл вуглецю в низькотемпературному мартенситі на основі заліза та його тетрагональність Распределение углерода в низкотемпературном мартенсите на основе железа и его тетрагональность Gavriljuk, V.G. Firstov, S.O. Sirosh, V.A. Tyshchenko, A.I. Mogilny, G.S. Дефекты кристаллической решётки Carbon distribution in the as-quenched Fe—C martensite obtained after cooling down to 4.5 K is studied using Mössbauer spectroscopy. The location of carbon atoms in the one of three available sublattices of octahedral interstitial sites is established, whereas the partial occupation by carbon atoms of tetrahedral sites or octahedral sites in other sublattices is not confirmed. The ageing of virgin isothermal martensite starts during heating at temperatures above -50°C and leads to disappearance of single carbon atoms and their clustering in the α solid solution. In comparison with martensite obtained at room temperature, a decreased tetragonality of the low-temperature isothermal martensite and its partial recovery during ageing is observed. Based on the estimation of dislocation density and the absence of ε-carbide precipitation during subsequent tempering, a conclusion is made that plastic deformation occurs in the course of isothermal martensitic transformation because of the softness of the virgin martensite. Finally, a new interpretation of the abnormally low tetragonality is proposed, of which the essence is the capture and transport of immobile carbon atoms by gliding dislocations. As a result, a part of carbon is removed from the α solid solution and forms carbon atmospheres around the dislocations. The comparison of this hypothesis with available other ones is presented. Two possible reasons for partial recovery of tetragonality during ageing of virgin martensite are discussed: (i) the unfreezing of Snoek atmospheres created by gliding dislocations crossing the immobile carbon atoms at low temperatures and (ii) coherent stresses at the boundaries of the intermittent carbon-rich and carbon-depleted domains in the modulated structure of the aged martensite. Розподіл вуглецю у свіжозагартованому Fe—C-мартенситі, одержаному в процесі охолодження до 4,5 К, досліджено методом Мессбауерівської спектроскопії. Встановлено розташування атомів Карбону в одній із трьох підґратниць октаедричних міжвузлів і не підтверджено часткову зайнятість ними інших підґратниць або тетраедричних міжвузлів. Розпад свіжозагартованого ізотермічного мартенситу починається при нагріванні вище -50°C і приводить до зникнення поодиноких атомів вуглецю в α-твердому розчині та утворення їх кластерів. У порівнянні з мартенситом, одержаним гартуванням за кімнатної температури, свіжозагартований низькотемпературний ізотермічний мартенсит характеризується зменшеною тетрагональністю, яка частково відновлюється при наступному нагріванні вище -50°C. Ґрунтуючись на оцінках густини дислокацій в одержаному низькотемпературному мартенситі та відсутності виділень ε-карбіду при наступному відпусканні, зроблено висновок, що, внаслідок низької міцности утвореного незастареного мартенситу, ізотермічне мартенситне перетворення супроводжується пластичною деформацією. В результаті запропоновано нову інтерпретацію аномально низької тетрагональности низькотемпературного мартенситу, суть якої полягає у захопленні та транспортуванні дислокаціями ковзання нерухомих атомів Карбону з видаленням їх із твердого розчину і утворенням Карбонових атмосфер в полі напружень дислокацій. Наведено її співставлення з наявними гіпотезами. Проаналізовано дві можливі причини часткового відновлення тетрагональности при старінні низькотемпературного мартенситу: (i) розморожування атмосфер Снука, утворених дислокаціями ковзання за низьких температур, і (ii) когерентні напруження на межах переміжних областей, збагачених та збіднених Карбоном у модульованій структурі застареного мартенситу. Распределение углерода в свежезакалённом Fe—C-мартенсите, полученном в процессе охлаждения до 4,5 К, исследовано методом мёссбауэровской спектроскопии. Установлено размещение атомов углерода в одной из трёх подрешёток октаэдрических междоузлий и не подтверждена частичная занятость ими других подрешёток или тетраэдрических междоузлий. Распад свежезакалённого изотермического мартенсита начинается при нагреве выше -50°C и приводит к исчезновению одиночных атомов углерода в α-твёрдом растворе и образованию их кластеров. В сравнении с мартенситом, полученным закалкой при комнатной температуре, свежезакалённый низкотемпературный изотермический мартенсит характеризуется пониженной тетрагональностью, которая частично восстанавливается при последующем нагреве выше -50°C. Основываясь на оценках плотности дислокаций в полученном мартенсите и отсутствии выделения ε-карбида при последующем отпуске, сделан вывод, что, вследствие низкой прочности образованного несостаренного мартенсита, изотермическое мартенситное превращение сопровождается пластической деформацией. В результате предложена новая интерпретация аномально низкой тетрагональности низкотемпературного мартенсита, суть которой заключается в захвате и транспорте дислокациями скольжения неподвижных атомов углерода с удалением их из твёрдого раствора и образованием углеродных атмосфер в поле напряжений дислокаций. Приведено её сопоставление с существующими гипотезами. Обсуждены две возможные причины частичного восстановления тетрагональности при старении низкотемпературного мартенсита: (i) размораживание атмосфер Снука, созданных движущимися дислокациями при низких температурах, и (ii) когерентные напряжения на границах чередующихся областей, обогащённых и обеднённых углеродом в модулированной структуре состаренного мартенсита. 2016 Article Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality / V. G. Gavriljuk, S. O. Firstov, V. A. Sirosh, A. I. Tyshchenko, and G. S. Mogilny // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 4. — С. 455-475. — Бібліогр.: 67 назв. — англ. 1024-1809 DOI: 10.15407/mfint.38.04.0455 PACS: 61.05.cp, 61.72.Hh, 62.20.fq, 64.70.kd, 81.30.Hd, 81.30.Kf, 81.40.Lm https://nasplib.isofts.kiev.ua/handle/123456789/112501 en Металлофизика и новейшие технологии application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Дефекты кристаллической решётки
Дефекты кристаллической решётки
spellingShingle Дефекты кристаллической решётки
Дефекты кристаллической решётки
Gavriljuk, V.G.
Firstov, S.O.
Sirosh, V.A.
Tyshchenko, A.I.
Mogilny, G.S.
Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality
Металлофизика и новейшие технологии
description Carbon distribution in the as-quenched Fe—C martensite obtained after cooling down to 4.5 K is studied using Mössbauer spectroscopy. The location of carbon atoms in the one of three available sublattices of octahedral interstitial sites is established, whereas the partial occupation by carbon atoms of tetrahedral sites or octahedral sites in other sublattices is not confirmed. The ageing of virgin isothermal martensite starts during heating at temperatures above -50°C and leads to disappearance of single carbon atoms and their clustering in the α solid solution. In comparison with martensite obtained at room temperature, a decreased tetragonality of the low-temperature isothermal martensite and its partial recovery during ageing is observed. Based on the estimation of dislocation density and the absence of ε-carbide precipitation during subsequent tempering, a conclusion is made that plastic deformation occurs in the course of isothermal martensitic transformation because of the softness of the virgin martensite. Finally, a new interpretation of the abnormally low tetragonality is proposed, of which the essence is the capture and transport of immobile carbon atoms by gliding dislocations. As a result, a part of carbon is removed from the α solid solution and forms carbon atmospheres around the dislocations. The comparison of this hypothesis with available other ones is presented. Two possible reasons for partial recovery of tetragonality during ageing of virgin martensite are discussed: (i) the unfreezing of Snoek atmospheres created by gliding dislocations crossing the immobile carbon atoms at low temperatures and (ii) coherent stresses at the boundaries of the intermittent carbon-rich and carbon-depleted domains in the modulated structure of the aged martensite.
format Article
author Gavriljuk, V.G.
Firstov, S.O.
Sirosh, V.A.
Tyshchenko, A.I.
Mogilny, G.S.
author_facet Gavriljuk, V.G.
Firstov, S.O.
Sirosh, V.A.
Tyshchenko, A.I.
Mogilny, G.S.
author_sort Gavriljuk, V.G.
title Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality
title_short Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality
title_full Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality
title_fullStr Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality
title_full_unstemmed Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality
title_sort carbon distribution in low-temperature isothermal iron-based martensite and its tetragonality
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2016
topic_facet Дефекты кристаллической решётки
url https://nasplib.isofts.kiev.ua/handle/123456789/112501
citation_txt Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality / V. G. Gavriljuk, S. O. Firstov, V. A. Sirosh, A. I. Tyshchenko, and G. S. Mogilny // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 4. — С. 455-475. — Бібліогр.: 67 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT gavriljukvg carbondistributioninlowtemperatureisothermalironbasedmartensiteanditstetragonality
AT firstovso carbondistributioninlowtemperatureisothermalironbasedmartensiteanditstetragonality
AT siroshva carbondistributioninlowtemperatureisothermalironbasedmartensiteanditstetragonality
AT tyshchenkoai carbondistributioninlowtemperatureisothermalironbasedmartensiteanditstetragonality
AT mogilnygs carbondistributioninlowtemperatureisothermalironbasedmartensiteanditstetragonality
AT gavriljukvg rozpodílvuglecûvnizʹkotemperaturnomumartensitínaosnovízalízatajogotetragonalʹnístʹ
AT firstovso rozpodílvuglecûvnizʹkotemperaturnomumartensitínaosnovízalízatajogotetragonalʹnístʹ
AT siroshva rozpodílvuglecûvnizʹkotemperaturnomumartensitínaosnovízalízatajogotetragonalʹnístʹ
AT tyshchenkoai rozpodílvuglecûvnizʹkotemperaturnomumartensitínaosnovízalízatajogotetragonalʹnístʹ
AT mogilnygs rozpodílvuglecûvnizʹkotemperaturnomumartensitínaosnovízalízatajogotetragonalʹnístʹ
AT gavriljukvg raspredelenieuglerodavnizkotemperaturnommartensitenaosnoveželezaiegotetragonalʹnostʹ
AT firstovso raspredelenieuglerodavnizkotemperaturnommartensitenaosnoveželezaiegotetragonalʹnostʹ
AT siroshva raspredelenieuglerodavnizkotemperaturnommartensitenaosnoveželezaiegotetragonalʹnostʹ
AT tyshchenkoai raspredelenieuglerodavnizkotemperaturnommartensitenaosnoveželezaiegotetragonalʹnostʹ
AT mogilnygs raspredelenieuglerodavnizkotemperaturnommartensitenaosnoveželezaiegotetragonalʹnostʹ
first_indexed 2025-11-24T02:19:56Z
last_indexed 2025-11-24T02:19:56Z
_version_ 1849636470025879552
fulltext 455 PACS numbers:61.05.cp, 61.72.Hh,62.20.fq,64.70.kd,81.30.Hd,81.30.Kf, 81.40.Lm Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality V. G. Gavriljuk, S. A. Firstov*, V. A. Sirosh, A. I. Tyshchenko, and G. S. Mogilny  G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv, Ukraine *I. M. Frantsevich Institute for Problems of Materials Science, N.A.S. of Ukraine, 3 Academician Krzhyzhanovs’kyy Blvd., UA-03680 Kyiv, Ukraine Carbon distribution in the as-quenched Fe—C martensite obtained after cool- ing down to 4.5 K is studied using Mössbauer spectroscopy. The location of carbon atoms in the one of three available sublattices of octahedral intersti- tial sites is established, whereas the partial occupation by carbon atoms of tetrahedral sites or octahedral sites in other sublattices is not confirmed. The ageing of virgin isothermal martensite starts during heating at temperatures above 50C and leads to disappearance of single carbon atoms and their clus- tering in the  solid solution. In comparison with martensite obtained at room temperature, a decreased tetragonality of the low-temperature iso- thermal martensite and its partial recovery during ageing is observed. Based on the estimation of dislocation density and the absence of -carbide precipi- tation during subsequent tempering, a conclusion is made that plastic defor- mation occurs in the course of isothermal martensitic transformation be- cause of the softness of the virgin martensite. Finally, a new interpretation of the abnormally low tetragonality is proposed, of which the essence is the capture and transport of immobile carbon atoms by gliding dislocations. As a result, a part of carbon is removed from the  solid solution and forms carbon atmospheres around the dislocations. The comparison of this hypothesis with available other ones is presented. Two possible reasons for partial recovery of Corresponding author: Valentin Gennadievich Gavriljuk E-mail: gavr@imp.kiev.ua Please cite this article as: V. G. Gavriljuk, S. A. Firstov, V. A. Sirosh, A. I. Tyshchenko, and G. S. Mogilny, Carbon Distribution in Low-Temperature Isothermal Iron-Based Martensite and Its Tetragonality, Metallofiz. Noveishie Tekhnol., 38, No. 4: 455—475 (2016) (in English), DOI: 10.15407/mfint.38.04.0455. Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2016, т. 38, № 4, сс. 455—475 / DOI: 10.15407/mfint.38.04.0455 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2016 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 456 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. tetragonality during ageing of virgin martensite are discussed: (i) the un- freezing of Snoek atmospheres created by gliding dislocations crossing the immobile carbon atoms at low temperatures and (ii) coherent stresses at the boundaries of the intermittent carbon-rich and carbon-depleted domains in the modulated structure of the aged martensite. Key words: isothermal martensitic transformation, plastic deformation, short-range atomic order, dislocations, tetragonality. Розподіл вуглецю у свіжозагартованому Fe—C-мартенситі, одержаному в процесі охолодження до 4,5 К, досліджено методом Мессбауерівської спе- ктроскопії. Встановлено розташування атомів Карбону в одній із трьох підґратниць октаедричних міжвузлів і не підтверджено часткову зайня- тість ними інших підґратниць або тетраедричних міжвузлів. Розпад сві- жозагартованого ізотермічного мартенситу починається при нагріванні вище 50C і приводить до зникнення поодиноких атомів вуглецю в - твердому розчині та утворення їх кластерів. У порівнянні з мартенситом, одержаним гартуванням за кімнатної температури, свіжозагартований низькотемпературний ізотермічний мартенсит характеризується змен- шеною тетрагональністю, яка частково відновлюється при наступному нагріванні вище 50C. Ґрунтуючись на оцінках густини дислокацій в одержаному низькотемпературному мартенситі та відсутності виділень - карбіду при наступному відпусканні, зроблено висновок, що, внаслідок низької міцности утвореного незастареного мартенситу, ізотермічне мар- тенситне перетворення супроводжується пластичною деформацією. В ре- зультаті запропоновано нову інтерпретацію аномально низької тетраго- нальности низькотемпературного мартенситу, суть якої полягає у захоп- ленні та транспортуванні дислокаціями ковзання нерухомих атомів Кар- бону з видаленням їх із твердого розчину і утворенням Карбонових атмо- сфер в полі напружень дислокацій. Наведено її співставлення з наявними гіпотезами. Проаналізовано дві можливі причини часткового відновлення тетрагональности при старінні низькотемпературного мартенситу: (i) ро- зморожування атмосфер Снука, утворених дислокаціями ковзання за ни- зьких температур, і (ii) когерентні напруження на межах переміжних об- ластей, збагачених та збіднених Карбоном у модульованій структурі за- стареного мартенситу. Ключові слова: ізотермічне мартенситне перетворення, пластична дефо- рмація, близький атомовий порядок, дислокації, тетрагональність. Распределение углерода в свежезакалённом Fe—C-мартенсите, получен- ном в процессе охлаждения до 4,5 К, исследовано методом мёссбауэров- ской спектроскопии. Установлено размещение атомов углерода в одной из трёх подрешёток октаэдрических междоузлий и не подтверждена частич- ная занятость ими других подрешёток или тетраэдрических междоузлий. Распад свежезакалённого изотермического мартенсита начинается при нагреве выше 50C и приводит к исчезновению одиночных атомов угле- рода в -твёрдом растворе и образованию их кластеров. В сравнении с мартенситом, полученным закалкой при комнатной температуре, свеже- закалённый низкотемпературный изотермический мартенсит характери- зуется пониженной тетрагональностью, которая частично восстанавлива- CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 457 ется при последующем нагреве выше 50C. Основываясь на оценках плотности дислокаций в полученном мартенсите и отсутствии выделения -карбида при последующем отпуске, сделан вывод, что, вследствие низ- кой прочности образованного несостаренного мартенсита, изотермиче- ское мартенситное превращение сопровождается пластической деформа- цией. В результате предложена новая интерпретация аномально низкой тетрагональности низкотемпературного мартенсита, суть которой заклю- чается в захвате и транспорте дислокациями скольжения неподвижных атомов углерода с удалением их из твёрдого раствора и образованием уг- леродных атмосфер в поле напряжений дислокаций. Приведено её сопо- ставление с существующими гипотезами. Обсуждены две возможные причины частичного восстановления тетрагональности при старении низкотемпературного мартенсита: (i) размораживание атмосфер Снука, созданных движущимися дислокациями при низких температурах, и (ii) когерентные напряжения на границах чередующихся областей, обога- щённых и обеднённых углеродом в модулированной структуре состарен- ного мартенсита. Ключевые слова: изотермическое мартенситное превращение, пластиче- ская деформация, ближний атомный порядок, дислокации, тетрагональ- ность. (Received February 10, 2016) 1. INTRODUCTION First time, the isothermal martensitic transformation in the iron- based solid solutions was studied in detail by Kurdyumov and Maxi- mova [1], although some indications were reported earlier (see, e.g., [2— 5]). Its main feature is the transformation in the course of time at low temperatures. Since the first study by Kurdyumov and Maximova, it was the object of intensive research on the ferrous and nonferrous al- loys, of which results were, e.g., summarized by Lobodyuk and Estrin [6, 7]. The following features of the isothermal martensite in Fe—C sol- id solutions are distinctive in comparison with that obtained in the nonferrous alloys and with the athermal Fe—C martensite. First, it is characterized by a low yield and ultimate strength and rather high plasticity [8—10]. Moreover, being integral part of the athermal iron—carbon martensitic transformation at ambient tempera- tures, the cracks are absent in the low-temperature isothermal marten- site. Cracking starts only during its heating above 50C [9]. Second, the carbon atoms are essentially immobile during the iso- thermal martensitic transformation (e.g., [11]), which results in a vir- gin non-aged iron—carbon martensite. Its ageing starts during heating above 50C and results in the martensite decomposition into the areas rich and depleted in carbon alternately. Third, the isothermal iron—carbon martensite is characterized by 458 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. decreased tetragonality [12] in comparison with that formed at ambi- ent temperatures. The tetragonality is partially recovered during heat- ing to room temperature, although never reaches its expected value described by the relation c/a  1  0.046сС, where cC is the carbon con- centration in mass %. The abnormally low tetragonality was found af- ter low-temperature martensitic transformation in Fe—Mn—C [12], Fe— Ni—C at a moderate Ni content of 8% [13], Fe—Re—C [14] and plain high carbon [15] martensites. Two main hypotheses have been proposed to interpret the abnormal- ly low tetragonality of the virgin iron—carbon martensite: (i) a partial location of carbon atoms in the tetrahedral interstitial sites resulted from the    martensitic transformation through the intermediate -phase [16]; (ii) a redistribution of carbon atoms among three sublat- tices of octahedral sites in the bcc crystal lattice due to a twinning on the (011) planes in the course of the low-temperature martensitic transformation [17]. According to the calculations [18], the occurrence of thin twin layers in the -iron lattice on the ]110)[011( system can shift the maximum of intensity in the X-ray reflections, which seems to be consistent with the second hypothesis. Later on, the abnormally high tetragonality was found in Fe—Al—C [19, 20] and, at rather high Ni contents, in Fe—Ni—C [21, 22] marten- sites. Based on these findings, the hypothesis [17] of carbon distribu- tion among different sublattices of octahedral interstitial sites has been updated [23], so that the occupation by carbon atoms of the only c- sublattice was supposed in case of high tetragonality, whereas the ‘normal’ tetragonality was attributed to a partial occupation of the a- and (or) b-sublattices, and the abnormally low tetragonality suggested an increase in this fraction of carbon atoms. The attempt of a critical experiment was undertaken using the neu- tron diffraction [24], of which results supported the interpretation given in [17, 23] and rejected the hypothesis in [16]. However, the both hypotheses were at variance with results of studies carried out using Mössbauer spectroscopy (see, e.g., [25—27]). This paper aims at the analysis of a mechanism for the abnormally low tetragonality of the low-temperature isothermal martensite taking into account its aforementioned properties, namely low strength of virgin martensite and immobility of carbon atoms at temperatures of the isothermal martensitic transformation. The occurrence of plastic deformation in the course of the isothermal transformation was the main idea tested in this study. 2. EXPERIMENTAL The tool steel X153CrMoV12 containing (% mass) 1.55C, 11.90Cr, 0.70V, 0.86Mo, 0.38Si, 0.33Mn, 0.05N, 0.00S, 0.02P, 0.00Al and a CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 459 reference steel 100Mn6 were studied. The first one was chosen be- cause, aiming the increase of their wear resistance, the tool steels are subjected to a deep cryogenic treatment where the isothermal marten- sitic transformation is expected. The second one has the fully austenit- ic structure and was first time used by Kurdyumov and Maximova [1] for studies of the isothermal martensitic transformation. Moreover, the abnormally low tetragonality of the low-temperature Fe—C marten- site was observed just on this steel by Lysak and Vovk [12]. For Mössbauer study of carbon distribution in the Fe—C solid solu- tion, the binary Fe—2.03% mass C alloy was obtained by the carburiza- tion of a pure iron foil of 20 m in thickness at 1150C under flowing methane followed by quenching in water. The obtained fully austenitic specimen was cooled down to 4.5 K in the cryostat of Mössbauer spec- trometer. Mössbauer measurements at 4.5 K revealed (68  1)% of the virgin martensite and (32  1)% of retained austenite. Thereafter, the sample was heated to 65 K and studied at this temperature after suc- cessive heating—cooling cycles within the temperature range between 65 and 293 K with holding for 10 min at each temperature. The martensitic transformation in the above-mentioned tool steel was studied using Mössbauer spectroscopy, X-ray diffraction and me- chanical spectroscopy. In addition, the TEM study of quenched sam- ples after the low-temperature tempering was carried out aiming to clarify the effect of isothermal martensitic transformation on the pre- cipitation of transient carbides. Specimens of steel X153CrMoV12 with a size of 10100.03 mm3 for Mössbauer spectroscopy, 10100.1 mm3 for X-ray diffraction and TEM, 0.70.760 mm3 for internal friction were solution treated at 1150C under protective argon atmosphere for 20 min followed by quenching at room temperature (RT) using the argon flow. After quenching at room temperature, the samples were subjected to deep cryogenic treatment for different times at temperatures of 196 and 150C. A feature of this experiment was a rapid immersion in liquid nitrogen, measurements at this temperature, subsequent heating and holding at 150C and measurements at 196C. Such a technique al- lowed one to keep the same cooling rate in the temperature range be- tween RT and the temperature of the isothermal treatment. As shown in [28], the holding at 196C is not accompanied by any transfor- mation because of too low thermal activation. A WISSEL Mössbauer spectrometer and a source of -quanta 57Co in a Cr matrix with an activity of 50 mCi were used for the measure- ments. The equipment was characterized by a line-width of 0.22 mm/s for the line of the -quanta source. The X-ray diffraction measurements were carried out with FeK- radiation using a Huber diffractometer with the operating voltage of 30 kV and one-circle —2-goniometer. A computer program con- 460 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. trolled the angular movement of both the goniometer and the counter. A cryosystem LN-3 produced by Cryo Industries of America Inc. was used for measurements at low temperatures. In contrast to standard cryostats, this system allows a rapid cooling of the sample installed in the diffractometer, its holding and measurements at any temperature within the range of 20 to 196C. With our samples, the lowest achieved temperature was 182C. An automated inverted pendulum with frequencies close to 1 Hz was used for obtaining the IF spectra within the temperature range of 190 to 600C. The heating/cooling rate was about 1.5 K/min. A JEM-2000 FXII transmission electron microscope, operating at a voltage of 200 kV, was used for structural studies in the transmission mode. Diffraction patterns from the areas of about 0.5 m in size were obtained by the conventional selected area diffraction (SAD) tech- nique. 3. CARBON DISTRIBUTION IN THE VIRGIN MARTENSITE Mössbauer spectra of Fe—2.03% C solid solution are presented in Fig. 1, a after cooling down to 4.5 K, measuring at this temperature, heat- ing up to 65 K (208C) and subsequent measuring at this temperature after holdings for 10 min at temperatures within the range in between 208C and RT. Figure 1, b shows the outer lines of these spectra (nu- clear transition 1/2  3/2). It is worth noting that either the fraction of the retained austenite, (32  1)%, or that of the martensite, (68  1)%, be measured at 4.5 K, were not changed due to heating to 65 K (208C) and subsequent hold- ings in between this temperature and RT. This result is at variance with the data presented in [29], where, using the uniaxial dilatometry, the inverse martensite-to-austenite transformation at low tempera- tures was mentioned to occur in the alloy of similar composition Fe— 1.95% C, as well as in the alloy Fe—1.60% C—2.24% Mn. Possibly, the relaxation of stresses during heating should be taken into account, if the dilatometry is used for studies of metastable martensitic phases. The stability of the retained austenite in the course of heating to RT gives also the evidence that the isothermal martensitic transformation in the studied binary Fe—C alloy proceeded only in the course of cooling. 3.1. Interpretation of Mössbauer Spectrum The virgin and aged Fe—C martensites were the object of a number of Mössbauer studies (see, e.g., [25—27, 30—38]). So far, it is hardly possi- ble to carry out ab initio calculations of hyperfine structure parame- ters in such multicomponent spectra. As a test for validity of their in- CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 461 terpretation, the change in the spectra caused by heating the virgin martensite to RT, can be used, taking into account the corresponding redistribution of carbon atoms and their additive effect on the hyper- fine field Hi at the nuclei of nearest iron atoms,  0.3 T per one carbon atom [26, 39]. As a first approximation, the martensitic spectrum in Fig. 1, b can be divided into 3 components A, B and C characterized by different hy- perfine fields Hi and belonging to iron atoms having no, one and two carbon atoms as nearest neighbours, respectively. At the same time, because of high sensitivity of the hyperfine field to local dilatations of the crystal lattice, different values of the isomeric shift and, particu- larly, the quadrupole interaction, can be revealed in each of these com- ponents. The component A is approximated by sextets 1 and 2 with different values of the hyperfine field, Hi, and a rather close isomer shift, , and quadrupole interaction, . Sextet 1 with the highest Hi comes from pure iron atoms in the martensite. Its increased hyperfine field in comparison with that in the pure -iron is obviously caused by dilata- tion of the crystal lattice at the distances far from carbon atoms, in ac- Fig. 1. Mössbauer spectra of the alloy F—2.03% mass C after quenching in wa- ter, cooling to 4.5 K, measurements at this temperature (as-quenched) and subsequent heating to different temperatures with holding for 10 min within the range of 208C to RT (a); outer lines (nuclear transition 1/2  3/2) of selected spectra (b). All measurements after heating were carried out at 65 K (208C). 462 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. cordance with the Bethe—Slater dependence of atomic magnetic mo- ments on the interatomic distance. Sextet 2 can be attributed to atoms 1Fe in Fig. 2, configuration a, which are the third neighbours of the carbon atoms and only slightly subjected to the effect of carbon atoms. After ageing at RT, the intensity of both sextets 1 and 2 decreases, see Fig. 1, b, and a new sextet 7 with the Hi typical for pure -iron be- comes dominant in this component, because the decomposition of the supersaturated carbon  solid solution due to ageing is accompanied by formation of rather large not dilated domains of pure iron atoms. Sextets 3 and 4 in the component B correspond to the iron atoms as second and first neighbours, respectively, of a single carbon atom in the octahedral site on the c axis (atoms 1Fe and 1Fe in the configura- tion a, see Fig. 2). The sign of the quadrupole interaction is different for these two kinds of atoms because of the different angle  between the electric field gradient q and direction of the axis of easy magneti- zation axis H. The quadrupole interaction is described by the formula 8/)1cos3( 22  qQe , where e and Q are the electron charge and the iron nuclear quadrupole moment, respectively. As Q is positive in the b.c.c. iron [40] and q is negative [41, 42], the quadrupole interaction  for 1eF  atoms should be negative and twice larger in comparison with 1eF  atoms (see Fig. 2, a and Table 1). Sextets 5 and 6 are characterized the same hyperfine fields, smaller by  3 T than that for atoms 1eF  , and different quadrupole interactions in their sign and by two times in the value. They belong to the iron at- Fig. 2. Configurations of iron and carbon atoms as derived from the interpre- tation of Mössbauer spectra. H is the axis of easy magnetization; q is the elec- tric field gradient. CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 463 oms Fe2 with two carbon atoms as nearest neighbours in the configura- tions c and d, where the angle  is equal to zero or 90, respectively. After cooling within the temperature range in between 208C and 50C, the spectra remain unchanged. A redistribution in the intensity of the components starts after heating above 50C (see Fig. 1, b). The component B caused by single carbon atoms essentially disappears, whereas the cluster component C increases its intensity. Due to ageing at RT, the outer lines are shifted to the gravity centre of the spectrum and the component 7 appears in the spectrum. 3.2. Carbon Distribution in the Virgin and Aged Martensites The obtained data of Mössbauer studies allow carrying out the follow- ing analysis of available hypotheses about carbon distribution in the virgin low-temperature martensite and its change in the course of the ageing. If some part of carbon atoms could be located in the a- or b- sublattices of the octahedral interstitial sites, as proposed in [17], an additional component is expected in the spectrum having the hyperfine field equal to that for spectrum 4 but different quadrupole interaction  in the sign and by two times in the value (see configurations a and b in Fig. 2). This component should disappear in the course of heating with- in the temperature range of 50C up to RT when tetragonality starts to increase. However, such a component is not found in the spectrum. Ino et al. [26] have analysed a hypothetic case of local turn in the ax- is of easy magnetization to follow the shift of carbon atoms into the a- or b-sublattices in the martensite. These authors have shown that the gain in the exchange energy for the alignment of the iron atom spins along the c axis, 1.410 20 J, is by two orders of magnitude higher than TABLE 1. Parameters of hyperfine structure in Mössbauer spectrum of Fe— 2.03% mass C for the virgin martensite. Sextet 7 appears after ageing at 20C. Measurements at 65 K (208C). Sextet Hyperfine field Hi, T Isomer shift (in relation to -iron)   0.005, mm/s Quadrupole interac- tion 4, mm/s 1 37.4  0.2 0.207 0.027  0.005 2 35.7  0.3 0.157 0.012  0.005 3 33.5  0.4 0.124 0.076  0.01 4 31.6  0.4 0.229 0.210  0.01 5 28.0  0.3 0.197 0.512  0.01 6 27.8  0.3 0.005 0.273  0.01 7 34.6  0.15 0.096 0.009  0.01 464 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. the anisotropic energy, 1.010 22 J, by which the spin direction of neighbouring iron atoms could be locally turned along the a or b axes, if the carbon is located in those sublattices. Therefore, such local mi- crodomains of differently oriented spins cannot exist within the -iron martensitic crystals. For the same reason, a possible partial localization of carbon atoms in the tetrahedral sites of virgin martensite should be accompanied by two additional components in Mössbauer spectra with the hyperfine field close to that of component 4 and different quadrupole interac- tions (see configuration e in Fig. 2). Therefore, the hypotheses attributing the abnormally low tetrago- nality of virgin martensite to the localization of carbon atoms in the tetrahedral sites [16] or their distribution on the a-, b-, or c-sublattices of octahedral sites [17] (see configurations e and b in Fig. 1) are not consistent with the hyperfine structure of Mössbauer spectra of virgin martensite and their evolution during the heating. The decrease in intensity of sextets 3 and 4 caused by single carbon atoms and the growth of sextets 5 and 6 belonging to carbon clusters at temperatures above 50C is consistent with the available observations of the decomposition and even formation of the modulated structure in the aged high-carbon martensites (e.g., [43, 44]). 4. PLASTIC DEFORMATION IN THE COURSE OF ISOTHERMAL MARTENSITIC TRANSFORMATION As follows from the X-ray diffraction measurements, Fig. 3, a, and da- ta of mechanical spectroscopy, Fig. 3, b, the isothermal martensitic transformation in the studied steel X153CrMoV12 proceeds within the temperature range in between 100C and 170C during cooling or heating with the maximal intensity at 150C. As a rule, due to the volume effect of phase transformations in sub- stitutional solid solutions, they are accompanied by plastic defor- mation. This deformation is often used in cyclic      heat treat- ments for the accumulation of crystal lattice defects and correspond- ing strengthening. However, it is not the case in carbon steels. Because of high mobility of carbon atoms at temperatures below Ms down to 50C, the ageing of the freshly formed martensite occurs just in the course of its for- mation, which increases strength and hardness and, thereby, prevents plastic deformation. Moreover, it is ageing that causes cracking dur- ing martensitic transformation [9]. As mentioned above, the low-temperature isothermal martensite in carbon steels possesses a decreased strength and it is free of mi- crocracks [8, 9]. This feature along with the immobility of carbon at- oms at temperatures below 50C is a hint that, like martensitic trans- CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 465 formations in the substitutional solid solutions, plastic deformation can occur during martensitic transformations at sufficiently low tem- peratures. Because of a complicated defect structure in the high-carbon steels and, having no possibility for TEM study in situ at low temperatures, two indirect experiments were carried out for testing this idea based on estimation of a change in dislocation density due to isothermal mar- tensitic transformation and studies of the low-temperature -carbide precipitation during subsequent tempering. The latter aimed to test a Fig. 3. Fragments of X-ray diffraction patterns of steel X153CrMoV12 after quenching from 1150C at RT, holding at 170C for 15 and 240 min and sub- sequent holding at 100C for 30 min. Evolution of the austenitic reflection (200) is shown in the upper left corner. Measurements at temperatures of holding (a); temperature dependence of internal friction in steels X153CrMoV12 and X220CrMoV13-4 in the course of heating after quenching in liquid nitrogen (b). 466 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. possible competition between the binding enthalpy of carbon atoms in dislocation atmospheres and the enthalpy of -carbide formation. In the first experiment, the Snoek—Köster (S—K) relaxation was measured, of which the source are the vibrations of dislocation seg- ments. At other equal conditions, e.g. the strain amplitude and fre- quency, the relaxation strength is proportional to the density of dislo- cations. In Figure 4, the S—K relaxation is presented for steel X153CrMoV12 after quenching at RT without or with subsequent holding at 196C or 150C for 24 hours. The highest relaxation peak indicating to a largest dislocation density is obtained after holding at 150C, where the isothermal transformation is the most intensive. As shown in [45], this growth of S—K relaxation strength, 9%, is much higher than the increment of the isothermal martensite fraction, 4%, which could be another source of the increased dislocation density. The idea of the second experiment is based on the old studies carried out by Wilson [46] who has shown that Vickers indentation test on the as-quenched Fe—0.8% C martensite prevents the precipitation of - carbide during subsequent tempering. The precipitation of the low-temperature -carbide during temper- ing of steel X153CrMoV12 is compared in case of quenching at RT, Fig. 5, and isothermal martensitic transformation at 150C, Fig. 6. The -carbide is clearly identified in Fig. 5 and is absent in Fig. 6, which is consistent with the observations made by Wilson. A reason for this phenomenon is the higher enthalpy of binding between disloca- tions and carbon atoms,  0.8 eV, and the heat solution of -carbide in the ferrite,  0.26 eV. The distorted shape of reflections, see Fig. 6, c, can be related to the Fig. 4. Snoek—Köster relaxation in steel X153CrMoV12 after holding at 196 and 150C for 24 hours in comparison with conventional quenching at room temperature. CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 467 formation of satellites due to spinodal decomposition during the age- ing of the low-temperature martensite, like it was observed earlier in Fe—Ni—C [43] and Fe—C [44] alloys. The total suppression of -carbide precipitation due to the isother- mal martensitic transformation gives the evidence that, be initiated by the softness of virgin martensite, plastic deformation involves the to- tal structure of steel including also the athermal martensite, in spite of its brittleness. This case can be compared with drawing or rolling of eutectoid steels containing the brittle plate cementite along with the soft ferrite. 5. A MECHANISM FOR DECREASE OF TETRAGONALITY Plastic deformation in the course of the low-temperature isothermal martensitic transformation is expected to be accompanied by the cap- ture and transport of immobile carbon atoms by gliding dislocations, which removes a part of carbon from the solid solution. If so, the te- tragonality of the virgin martensite should be decreased. The main point in this hypothesis is a possibility for the transport of interstitial atoms by dislocations. Theoretical and experimental studies of the transport of hydrogen atoms by dislocations were carried out mainly in the seventies [47—49]. In relation to carbon, it is worth to note the striking difference be- tween the decrease of carbon mobility in the deformed steels and the enhanced carbon migration in the course of plastic deformation [50— Fig. 5. Precipitates of -carbide after tempering at 100C of steel X153CrMoV12 quenched at RT. The -carbide was identified by diffraction from the area marked with a circle (a); the same after tempering at 200C (b); diffraction pattern after tempering at 200C, zone axes ]311[ and ]121[ (c). 468 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. 52]. This enhancement significantly exceeds the expected increase in the mechanical driving force for the diffusion flux. A non-activated mechanism for formation and transport of a ‘dislocation—interstitial atom’ complex was analysed within the scope of the Frenkel—Kontoro- va model in [53]. An indirect confirmation of carbon transfer by dislocations is pre- sented by the phenomenon of cementite decomposition during plastic deformation of pearlitic steels by drawing or rolling. About 50% of ce- mentite is decomposed due to severe plastic deformation of the eutectoid steel [54—56]. The degree of decomposition is controlled by the competi- tion between Fe—C bonding in the cementite lattice and the enthalpy of binding of carbon atoms to dislocations in the ferrite (see [57, 58]). As shown in the quoted studies, the thin plate cementite is inten- sively decomposed during plastic deformation, whereas a smaller de- composition is found in case of the coarse plate cementite and no ce- mentite decomposition occurs for the coarse grain cementite. The total cementite decomposition is obtained due to severe plastic deformation by the high-pressure torsion (e.g. [59]). At the same time, there is no indication to any increase in the ferrite lattice parameter, and, therefore, practically no carbon from the de- composed cementite is dissolved in the  solid solution. This conclusion is also supported by Mössbauer studies [55—58], where the spectra are shown to consist of only two sextets from ferrite and cementite. No components caused by carbon in the  solid solution are present in Mössbauer spectra of cold worked pearlitic steels and only their inten- sity is changed due to partial decomposition of cementite. Recently, using Local Electron Atom Probe study [60], it was found that carbon atoms of decomposed cementite in the severely deformed steel are located at the dislocations in the ferrite. Such a huge carbon concentration at the dislocations cannot be reached by a pulling of car- bon atoms out of cementite lattice by dislocations with formation of Fig. 6. Martensite after deep cryogenic treatment, DCT, at 150C and tem- pering at 100C for 2 h (a); electron diffraction, zone axis [133] (b); diffrac- tion spot ]101[ asymmetrical in directions ]313[ and ]213[ (c). CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 469 Cottrell’s atmospheres because, in contrast to Cottrell and Bilby analy- sis [61], these atmospheres are rather diluted [62]. In other words, to be decomposed, the cementite should be involved in deformation of pearlitic steels. As shown using transmission elec- tron microscopy [63, 64], the cementite of plate morphology in pearlit- ic steels is plastically deformed during the drawing or rolling. Therefore, a mechanism for the strain-induced cementite decomposi- tion amounts to the cutting of cementite plates by the gliding disloca- tions followed by the capture of carbon atoms and their transfer into the ferrite with formation of carbon segregations around the dislocations. Based on the aforementioned analysis, one can assume that a similar mechanism is operating in case of the low-temperature isothermal martensitic transformation, i.e. the plastic deformation results in the capture and transport of carbon atoms by gliding dislocations. If so, it is particularly interesting to analyse the partial recovery of tetragonality during subsequent heating of the virgin martensite. The point is that, as mentioned above, because of a high enthalpy of bind- ing between carbon atoms and dislocations, the atoms in dislocation atmospheres cannot contribute to the ageing of virgin martensite. Even the precipitation of the low-temperature -carbide is suppressed, if carbon atoms are located in the field stress of dislocations. Steel 100Mn6 having Ms  93C and subjected to the isothermal martensitic transformation during holding at 150C was used for this study. The change in the martensite tetragonality during subsequent heating up to 70C is presented in Fig. 7. It is seen that tetragonality c/a  1.026 is much smaller of its value 1.047 expected for the Fe—C martensite with 1.0% mass C. Its partial recovery up to c/a  1.036 occurs due to heating to RT. At 70C, the c/a ratio starts to decrease. According to hypotheses of [16, 17], the heating leads to jumping of carbon atoms from the tetrahedral to octahedral interstitial sites [16] or disappearance of (011) twins [17]. However, as shown in Section 3.2, no corresponding components appear in Mössbauer spectra of the vir- gin martensite and disappear in the course of its heating to RT. The effect of heating amounts only to the decrease in the fraction of single carbon atoms and increase in that of carbon clusters. In view of the decisive role of plastic deformation in the decreased tetragonality of the low-temperature isothermal martensite, as pro- posed in this study, two possibilities for its partial recovery during heating can be analysed. The first one concerns the interaction between gliding dislocations and immobile carbon atoms at low temperatures. One can imagine that some carbon atoms are not captured by crossing dislocations. In this case, the so-called Snoek atmospheres are formed, of which essence is a change in the ordering of carbon atoms, i.e., their jumping from the interstitial sites in the c-sublattice into those in the a- or b-sublattices. 470 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. In case of mobile carbon atoms, the Snoek atmospheres disappear im- mediately after dislocation passage because the Zener ordering returns carbon atoms into the c-sublattice. However, at temperatures below 50C, this reverse jumping is impossible, which decreases tetragonal- ity like it is proposed in hypothesis [17]. In the course of subsequent heating, at temperatures above 50C, Zener ordering starts to be op- erating and results in jumping of carbon atoms back into the c- sublattice and recovery of tetragonality. The only objection against this interpretation is that, like the case in Fig. 7. Low-temperature X-ray diffraction of steel 100Mn6 after solution treatment at 1000C, isothermal martensitic transformation at 150C and subsequent heating: fragments of diffraction patterns obtained in the course of heating from 120 to 70C and evolution of the austenitic (200) reflection in the course of holding at 150C (the insert in the upper right corner) (a), corresponding change in tetragonality of martensite (b). CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 471 hypotheses [16] and [17], such frozen Snoek atmospheres should cause additional components in Mössbauer spectrum of the virgin Fe—C mar- tensite and their disappearance during heating, which is not observed. The second possibility is to attribute the partial recovery of tetrago- nality to some coherent stresses appearing in the course of martensite ageing. These stresses are supposed to be caused by spinodal-like de- composition of the virgin martensite and formation of carbon-rich and carbon-depleted areas. The analogy to this case can be found in the studies of tetragonality of the carbon-free Fe—Ni martensites with the Ni content in the invar area. The spinodal-like decomposition in instead of I the Fe—Ni invar alloys was demonstrated in [65]. The short-range decomposition in the austenitic Fe—Ni alloy was also proven by X-ray diffraction and TEM studies, based on the theoretical calculations of Fe—Fe, Fe—Ni and Fe— Ni interatomic bonds and different hydrogen solubility, correspond- ingly different dilatation in the Fe-rich and Ni-rich areas of the Fe—Ni solid solution [66]. A fragment of diffraction pattern of the Fe—33.5Ni alloy after aus- tenitizing at 1150C and cooling down to 10 K is presented in Fig. 8 (see about detail [67]). The doublet (112)/(211) in the as-quenched state, see Fig. 8, a, is the evidence of tetragonality in the martensite lattice in absence of carbon. A slight deformation at 40 K by a screw mounted in the cryostat led to a decrease in the c/a ratio (Fig. 8, b). Af- ter further slight deformation at 110 K, tetragonality disappears (Fig. 8, c). It also disappears without any deformation due to increase in mo- bility of dislocations during heating in the temperature range between 110 K and 200 K. This experiment clearly indicates to coherent stresses as a source for tetragonality of the virgin martensite. The nature of this coherency can be of two kinds: (i) coherent stresses at the interface between vir- gin martensite and retained austenite, as proposed in [67] and (ii) stresses caused by different dilatation in the Fe-rich and Ni-rich areas because of the short-range decomposition. The Ni-rich areas in the aus- tenitic invar alloy are characterized by Langevin superparamagnetism and, correspondingly, a large volume magnetostriction in superpara- magnetic clusters, which is inherited by the virgin martensite formed due to quenching at low temperatures. Similar way, the increase in the c/a ratio during heating of the iso- thermal martensite from 50C to RT (see Fig. 7, b) can be related to stresses caused in the aged martensite by its spinodal decomposition. 6. CONCLUSIONS 1. Mössbauer studies of the as-quenched binary Fe—C martensite formed at temperatures below RT revealed the distribution of carbon 472 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. atoms solely in one of three sublattices of the octahedral interstitial sites in the b.c.c. iron lattice, and no sign of carbon localization in oth- er sublattices or in the tetrahedral sites was detected. 2. The low-temperature isothermal martensitic transformation in car- bon steels is accompanied by plastic deformation, which can be ex- plained by the softness of the transformed virgin martensite. 3. The abnormally low tetragonality of the virgin isothermal marten- site is attributed to the capture and transport of immobile carbon at- oms by gliding dislocations removing a part of carbon atoms from the  solid solution and resulting in formation of carbon atmospheres around the dislocations. 4. Two possible reasons for partial recovery of tetragonality during the Fig. 8. The effect of in situ deformation on the diffraction peaks (112) and (211) of the virgin Fe—33.5% mass Ni martensite with Ms  125 K after aus- tenitizing at 1150C and cooling down to 4 K: undeformed (a); deformed at 40 K (b); further deformed at 110 K (c). Measurements are carried out at 40 K. CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 473 heating of virgin isothermal martensite above 50C are discussed in terms of the unfreezing of Snoek carbon atmospheres created by glid- ing dislocations at low temperatures or coherent stresses arising from the decomposition of the aged martensite into the carbon-rich and car- bon-depleted domains with formation of the modulated structure. REFERENCES 1. G. V. Kurdyumov and O. P. Maximova, Reports of AS USSR, 61: 83 (1948). 2. C. Benedics, J. Iron Steel Inst., 77: 233 (1908). 3. E. C. Bain, Chem. Met. Eng., 26: 543 (1922). 4. S. S. Steinberg, Metallurg., 4: 68 (1930) (in Russian). 5. V. D. Sadovsky and I. V. Shtishevskaya, Proc. UFAS USSR, 9: 45 (1937) (in Russian). 6. V. A. Lobodyuk and E. I. Estrin, Uspekhi Fizicheskikh Nauk, 175, No. 7: 745 (2005) (in Russian). 7. V. A. Lobodyuk and E. I. Estrin, Martensitic Transformations (Cambridge: Cambridge International Science Publishing: 2015). 8. J. Pietikainen, J. Iron Steel Inst., 206: 74 (1968). 9. J. Pietikainen, Trans. Iron and Steel Inst. of Japan, 25, No. 4: 340 (1985). 10. G. T. Eldis and M. Cohen, Metall. Trans. A, 14, Iss. 6: 1007 (1983). 11. V. N. Gridnev, V. G. Gavriljuk, V. V. Nemoshkalenko, Yu. A. Polushkin, and O. N. Razumov, Fiz. Met. Metalloved., 43, No. 3: 582 (1977) (in Russian). 12. L. I. Lysak and Ya. N. Vovk, Fiz. Met. Metalloved., 20, No. 4: 540 (1965) (in Russian). 13. L. I. Lysak and V. Ye. Danilchenko, Fiz. Met. Metalloved., 32, No. 3: 639 (1971) (in Russian). 14. L. I. Lysak and L. O. Andrushchik, Fiz. Met. Metalloved., 26, No. 2: 380 (1968) (in Russian). 15. L. I. Lysak and S. P. Kondratiev, Fiz. Met. Metalloved., 30, No. 5: 973 (1970) (in Russian). 16. L. I. Lysak and B. I. Nikolin, Fiz. Met. Metalloved., 22, No. 5: 730 (1966) (in Russian). 17. A. L. Roytburd and A. G. Khachaturyan, Fiz. Met. Metalloved., 30, No. 6: 1189 (1970) (in Russian). 18. D. A. Mirzayev, S. V. Rushits, A. I. Ustinov, and Yu. H. Goykhenberg, Metallofizika, 4, No. 4: 43 (1982) (in Russian). 19. M. Watanabe and C. M. Wayman, Scr. Metall., 5, Iss. 2: 109 (1971). 20. L. I. Lysak, A. G. Drachinskaya, and N. A. Storchak, Fiz. Met. Metalloved., 34, No. 1: 84 (1972) (in Russian). 21. L. I. Lysak, S. A. Artemyuk, and Yu. M. Polyshchuk, Fiz. Met. Metalloved., 35, No. 5: 1098 (1973) (in Russian). 22. L. K. Mykhaylova, Reports of AS USSR, 216, No. 4: 778 (1974). 23. G. V. Kurdyumov and A. G. Khachaturyan, Acta Metall., 23, Iss. 9: 1077 (1975). 24. J. R. Entin, V. A. Somenkov, and S. Sh. Shylstein, Dokl. Akad. Nauk USSR, 206: 1096 (1972) (in Russian). 25. V. G. Gavriljuk, V. N. Gridnev, V. V. Nemoshkalenko, O. N. Razumov, and 474 V. G. GAVRILJUK, S. A. FIRSTOV, V. A. SIROSH et al. Yu. A. Polushkin, Fiz. Met. Metalloved., 43, No. 3: 582 (1977) (in Russian). 26. H. Ino, T. Ito, S. Nasu, and U. A. Gonser, Acta Metall., 30: 9 (1982). 27. J.-M. Genin, Metall. Trans. A, 18: 1371 (1987). 28. V. G. Gavriljuk, W. Theisen, V. V. Sirosh, E. V. Polshin, A. Kortmann, G. S. Mogilny, Yu. N. Petrov, and Ye. V. Tarusin, Acta Mater., 61: 1705 (2013). 29. D. E. Kaputkin, Mat. Sci. Eng. A, 438—440: 207 (2006). 30. P. M. Gielen and R. Kaplow, Acta Metall., 15: 49 (1967). 31. T. Moriya, H. Ino, and F. E. Fujita, J. Phys. Soc. Japan, 24: 60 (1968). 32. M. Lesoille and P. M. Gielen, Metall. Trans., 3: 2681 (1972). 33. R. I. Entin, V. A. Somenkov, and S. S. Shilstein, Reports of AS USSR, 5: 1096 (1972) (in Russian). 34. W. K. Choo and R. W. Kaplow, Acta Metall., 21: 725 (1973). 35. N. de Cristopharo and R. Kaplow, Metall. Trans. A, 8: 35 (1977). 36. A. L. Sozinov, A. G. Balanyuk, and V. G. Gavriljuk, Acta Mater., 45: 225 (1997). 37. O. N. C. Uwakweh, J. Ph. Bauer, and J.-M. R. Genin, Metall. Trans. A, 21: 589 (1990). 38. J. Foct, J. P. Senateur, J. M. Dubois, and G. le Caer, J. Phys. Colloques, 40: C2-647 (1979). 39. J. Foct, G. Le Caer. J. M. Dubois, and R. Faivri, Veglici, Borki, Azotki w Stalakh (Poznan: Politecn. Poznan: 1978), p. 225. 40. R. Ingalls, Phys. Rev., 133, Iss. 3A: 787 (1964). 41. R. E. Watson, A. C. Gossard, and J. Jafet, Phys. Rev., 140, Iss. 1A: 375 (1965). 42. M. H. Cohen and F. Reif, Solid. Phys., 5: 321 (1957). 43. R. A. Taylor, L. Chang, G. B. Olson, G. D. W. Smith, M. Cohen, and J. B. Wander Sande, Metall. Trans. A, 20: 2717 (1989). 44. O. N. C. Uwakweh, J.-M. R. Genin, and J.-F. Silvain, Metall. Trans. A, 22, Iss. 4: 797 (1991). 45. V. O. Sirosh, A. I. Tyshchenko, G. S. Mogilnyi, Yu. M. Petrov, E. V. Polshin, and V. G. Gavriljuk, Metallofiz. Noveishie Tekhnol., 36, No. 7: 871 (2014) (in Russian). 46. D. V. Wilson, Acta Metall., 5: 293 (1957). 47. J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards, Metall. Trans. A, 7, Iss. 6: 821 (1976). 48. A. J. West and M. R. Louthan, Metall. Trans. A, 10, Iss. 11: 1675 (1979). 49. G. S. Frankel and R. M. Lataqnision, Metall. Trans. A, 17, Iss. 5: 861 (1986). 50. M. A. Matosyan and V. M. Golikov, Protective Coatings on Metals (Kiev: Naukova Dumka: 1970), vol. 3, p. 57 (in Russian). 51. T. N. Lipchin, L. G. Chernuka, A. U. Pavlova, and V. I. Suntsev, Metal Science and Heat Treatment of Metals, Iss. 2: 66 (1973) (in Russian). 52. L. N. Larikov, V. F. Mazanko, V. M. Falchenko et al., Reports of Academy of Sciences of Ukrainian SSR, Iss. 7: 636 (1975) (in Russian). 53. I. M. Karnaukhov, O. Ye. Pogorelov, and M. S. Chernolevs’ky, Metallofiz. Noveishie Tekhnol., 28, No. 6: 827 (2006) (in Russian). 54. M. V. Belous and V. T. Cherepin, Fiz. Met. Metalloved., 12, No. 5: 685 (1961) (in Russian). 55. V. N. Gridnev, V. G. Gavriljuk, I. Ya. Dekhtyar, Yu. Ya. Meshkov, V. G. Prokopenko, and P. S. Nizin, phys. status solidi (a), 14, Iss. 2: 689 CARBON DISTRIBUTION IN LOW-TEMPERATURE IRON-BASED MARTENSITE 475 (1972). 56. V. G. Gavriljuk, Fiz. Met. Metalloved., 45, No. 5: 969 (1978) (in Russian). 57. V. N. Gridnev and V. G. Gavriljuk, Physics of Metals (USSR), 4, No. 3: 531 (1982). 58. V. G. Gavriljuk, Mat. Sci. Eng. A, 345: 81 (2003). 59. Yu. Ivanisenko, W. Lojkowski, R. Z. Valiev, and H.-J. Fecht, Acta Mater., 51: 5555 (2003). 60. Y. J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, Acta Mater., 59: 3965 (2011). 61. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. A, 62: 49 (1949). 62. M. A. Shtremel, B. Winderlich, and F. F. Sagdarova, Fiz. Met. Metalloved., 47, No. 4: 754 (1979) (in Russian). 63. A. Inoue, T. Ogura, and T. Masumoto, J. Jap. Inst. Metals, 37, No. 8: 875 (1973). 64. A. Inoue, T. Ogura, and T. Masumoto, Metall. Trans. A, 8, Iss. 11: 1689 (1975). 65. F. A. Garner and J. M. McCarthy, Physical Metallurgy of Controlled Expansion Invar-Type Alloys (Eds. K. C. Russel and D. F. Smith) (Warendale, PA: TMS—AIME: 1990), p. 187. 66. D. N. Movchan, V. N. Shyvanyuk, B. D. Shanina, and V. G. Gavriljuk, phys. status solidi (a), 207, Iss. 8: 1796 (2010). 67. K. Ullakko and V. G. Gavriljuk, Acta Metallurgica et Materialia, 40, Iss. 10: 2471 (1992). << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice