Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions
The nanosized powders formed on the steel surface contacting with zinc and nickel inorganic water salt solutions under the rotation-corrosion dispergation (RCD) conditions have been studied using an X-ray diffraction method, thermal analytical measurements (TG / DTG, DTA) and scanning electron micro...
Saved in:
| Date: | 2015 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
2015
|
| Series: | Современные проблемы физического материаловедения |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/114561 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions / O.M. Lavrynenko, O.Yu. Pavlenko, Yu.S. Shchukin // Современные проблемы физического материаловедения: Сб. научн . тр. — К.: ІПМ НАН України, 2015. — Вип. 24. — С. 69-81. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-114561 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1145612025-02-23T19:47:57Z Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions Характеристика цинк- і нікелевмісних залізокисневих нанофаз, отриманих на поверхні сталі в умовах ротаційно-корозійного диспергування Характеристика цинк- и никельсодержащих железо-кислородных нанофаз, полученных на поверхности стали в условиях ротационно-коррозионного диспергирования Lavrynenko, O.M. Pavlenko, O.Yu. Shchukin, Yu.S. The nanosized powders formed on the steel surface contacting with zinc and nickel inorganic water salt solutions under the rotation-corrosion dispergation (RCD) conditions have been studied using an X-ray diffraction method, thermal analytical measurements (TG / DTG, DTA) and scanning electron microscopy. It was shown that the formation of a single mineral phase of a non-stoichiometric spinel ferrite when zinc and nickel nitrate solutions were used as the dispersion medium, but in the presence of chloride-containing salts three mineral phases (spinel ferrite, lepidocrocite, and goethite) were determined in the phase composition of the surface powders. When sulfate solutions were chosen as the dispersion medium the mixed hydroxysulfate layered double hydroxides (LDHs) simultaneously appeared among other components of the powders. Due to exchange of cations Fe(II) and other 3d-metals between the disperse phase and dispersion medium the mixed LDH structures achieved stability against further oxidation and phase transformation. Hence, the presence of mixed LDHs in the phase composition of the powders significantly complicates the obtaining of monomineral phases of spinel ferrites or iron oxides when the RCD method is applied. Нанорозмірні суміші залізокисневих фаз отримані за умов ротаційно-корозійного диспергування на поверхні сталі, яка контактує з водними розчинами неорганічних солей цинку і нікелю. Їх будо досліджено методами рентгено-фазового аналізу, диференційного термічного аналізу (ТГ / ДТГ, ДТА) і сканівної електронної мікроскопії. Показано, що при використанні у якості дисперсійного середовища розчинів нітратів цинку та нікелю у складі порошків утворюється єдина мінеральна фаза нестехіометричної феришпінелі. Водночас у присутності Cl–-вмісних розчинів у складі порошків визначено три мінеральні фази (феришпінель, лепідокрокіт і гетит). При використанні у якості дисперсійного середовища SO₄²⁻ -вмісних розчинів у складі порошків, одночасно з іншими фазами з’являються змішані шаруваті подвійні гідроксиди (ШПГ) железа та цинку або нікеля. Обмін катіонами Fe(II) і 3d-металів між дисперсною фазою та дисперсійним середовищем веде до стабілізації структури ШПГ, що значною мірою ускладнює отримання при їх термічному перетворенні мономінеральних фаз феришпінелей та оксидів железа. Наноразмерные смеси железо-кислородных фаз получены на поверхности стали, контактирующей с водными растворами неорганических солей цинка и никеля, в условиях ротационно-коррозионного диспергирования. Смеси исследованы методами рентгенофазового анализа, дифференциального термического анализа (ТГ / ДТГ, ДТА) и сканирующей электронной микроскопии. Показано, что при использовании в качестве дисперсионной среды растворов нитратов цинка и никеля образуется единственная минеральная фаза нестехиометрической ферришпинели. В то же время в присутствии Cl–-cодержащих растворов в составе порошков определены три минеральные фазы (ферри¬шпинель, лепидокрокит и гетит). При использовании в качестве дисперсионной среды SO₄²⁻ -содержащих растворов в составе порошков одновременно с другими фазами образуются смешанные слоистые двойные гидроксиды (СДГ) железа и цинка или никеля. Обмен катионами Fe(II) и 3d-металлов между дисперсной фазой и дисперсионной средой приводит к стабилизации структуры СДГ, что значительно усложняет получение при их термической трансформации мономинеральных фаз ферришпинелей или оксидов железа. 2015 Article Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions / O.M. Lavrynenko, O.Yu. Pavlenko, Yu.S. Shchukin // Современные проблемы физического материаловедения: Сб. научн . тр. — К.: ІПМ НАН України, 2015. — Вип. 24. — С. 69-81. — Бібліогр.: 24 назв. — англ. XXXX-0073 https://nasplib.isofts.kiev.ua/handle/123456789/114561 544.77:549.73+549.5 en Современные проблемы физического материаловедения application/pdf Інститут проблем матеріалознавства ім. І.М. Францевича НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
The nanosized powders formed on the steel surface contacting with zinc and nickel inorganic water salt solutions under the rotation-corrosion dispergation (RCD) conditions have been studied using an X-ray diffraction method, thermal analytical measurements (TG / DTG, DTA) and scanning electron microscopy. It was shown that the formation of a single mineral phase of a non-stoichiometric spinel ferrite when zinc and nickel nitrate solutions were used as the dispersion medium, but in the presence of chloride-containing salts three mineral phases (spinel ferrite, lepidocrocite, and goethite) were determined in the phase composition of the surface powders. When sulfate solutions were chosen as the dispersion medium the mixed hydroxysulfate layered double hydroxides (LDHs) simultaneously appeared among other components of the powders. Due to exchange of cations Fe(II) and other 3d-metals between the disperse phase and dispersion medium the mixed LDH structures achieved stability against further oxidation and phase transformation. Hence, the presence of mixed LDHs in the phase composition of the powders significantly complicates the obtaining of monomineral phases of spinel ferrites or iron oxides when the RCD method is applied. |
| format |
Article |
| author |
Lavrynenko, O.M. Pavlenko, O.Yu. Shchukin, Yu.S. |
| spellingShingle |
Lavrynenko, O.M. Pavlenko, O.Yu. Shchukin, Yu.S. Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions Современные проблемы физического материаловедения |
| author_facet |
Lavrynenko, O.M. Pavlenko, O.Yu. Shchukin, Yu.S. |
| author_sort |
Lavrynenko, O.M. |
| title |
Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions |
| title_short |
Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions |
| title_full |
Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions |
| title_fullStr |
Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions |
| title_full_unstemmed |
Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions |
| title_sort |
characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions |
| publisher |
Інститут проблем матеріалознавства ім. І.М. Францевича НАН України |
| publishDate |
2015 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/114561 |
| citation_txt |
Characteristic of the zinc- and nickel-containing iron-oxygen nanophases formed on the steel surface under rotation-corrosion dispergation conditions / O.M. Lavrynenko, O.Yu. Pavlenko, Yu.S. Shchukin // Современные проблемы физического материаловедения: Сб. научн . тр. — К.: ІПМ НАН України, 2015. — Вип. 24. — С. 69-81. — Бібліогр.: 24 назв. — англ. |
| series |
Современные проблемы физического материаловедения |
| work_keys_str_mv |
AT lavrynenkoom characteristicofthezincandnickelcontainingironoxygennanophasesformedonthesteelsurfaceunderrotationcorrosiondispergationconditions AT pavlenkooyu characteristicofthezincandnickelcontainingironoxygennanophasesformedonthesteelsurfaceunderrotationcorrosiondispergationconditions AT shchukinyus characteristicofthezincandnickelcontainingironoxygennanophasesformedonthesteelsurfaceunderrotationcorrosiondispergationconditions AT lavrynenkoom harakteristikacinkíníkelevmísnihzalízokisnevihnanofazotrimanihnapoverhnístalívumovahrotacíjnokorozíjnogodisperguvannâ AT pavlenkooyu harakteristikacinkíníkelevmísnihzalízokisnevihnanofazotrimanihnapoverhnístalívumovahrotacíjnokorozíjnogodisperguvannâ AT shchukinyus harakteristikacinkíníkelevmísnihzalízokisnevihnanofazotrimanihnapoverhnístalívumovahrotacíjnokorozíjnogodisperguvannâ AT lavrynenkoom harakteristikacinkinikelʹsoderžaŝihželezokislorodnyhnanofazpolučennyhnapoverhnostistalivusloviâhrotacionnokorrozionnogodispergirovaniâ AT pavlenkooyu harakteristikacinkinikelʹsoderžaŝihželezokislorodnyhnanofazpolučennyhnapoverhnostistalivusloviâhrotacionnokorrozionnogodispergirovaniâ AT shchukinyus harakteristikacinkinikelʹsoderžaŝihželezokislorodnyhnanofazpolučennyhnapoverhnostistalivusloviâhrotacionnokorrozionnogodispergirovaniâ |
| first_indexed |
2025-11-24T18:35:42Z |
| last_indexed |
2025-11-24T18:35:42Z |
| _version_ |
1849697860789993472 |
| fulltext |
69
UDC 544.77:549.73+549.5
Characteristic of the zinc- and nickel-containing
iron-oxygen nanophases formed on the steel surface under
the rotation-corrosion dispergation conditions
O. M. Lavrynenko, O. Yu. Pavlenko, Yu. S. Shchukin
F. D. Ovcharenko Institute of Bio-Colloid Chemistry of NAS of Ukraine,
Kyiv, Ukraine, e-mail: alena-lavry@yandex.ru
The nanosized powders formed on the steel surface contacting with zinc and nickel
inorganic water salt solutions under the rotation-corrosion dispergation (RCD)
conditions have been studied using an X-ray diffraction method, thermal analytical
measurements (TG / DTG, DTA) and scanning electron microscopy. It was shown that the
formation of a single mineral phase of a non-stoichiometric spinel ferrite when zinc and
nickel nitrate solutions were used as the dispersion medium, but in the presence of
chloride-containing salts three mineral phases (spinel ferrite, lepidocrocite, and goethite)
were determined in the phase composition of the surface powders. When sulfate solutions
were chosen as the dispersion medium the mixed hydroxysulfate layered double
hydroxides (LDHs) simultaneously appeared among other components of the powders.
Due to exchange of cations Fe(II) and other 3d-metals between the disperse phase and
dispersion medium the mixed LDH structures achieved stability against further oxidation
and phase transformation. Hence, the presence of mixed LDHs in the phase composition
of the powders significantly complicates the obtaining of monomineral phases of spinel
ferrites or iron oxides when the RCD method is applied.
Key words: the rotation-corrosion dispergation method, non-stoichiometric Zn- and Ni-
containing spinel ferrites, mixed layered double hydroxides (LDHs), nanopowders.
Introduction
Nowadays the interest in the obtaining of various functional materials is
closely connected with the creation of new and improvement of the existent
methods of nanosynthesis. Nanosized iron-bearing particles characterized by
ferrimagnetic and superparamagnetic properties are widely used as a precursor
material for technical and biomedical aims [1, 2]. For instance, polymorphic
iron oxides and spinel ferrites as well as metallic iron nanoparticles may be
related to the most typical structures belonging to such kind of materials. Due to
the small particle size the physical-chemical and colloid-chemical properties of
nanodisperse oxides and ferrites, such as mechanical, electrical, magnetic,
thermal, optical, and chemical, differ from their macroscopic analogues [3].
Additional features of iron oxide particles are determined by the synthesis
method [4] and the presence of doped elements, especially metals, in their
structure [5].
Recently we have proposed a new method for the obtaining of nanosized
iron oxyhydroxides, iron oxides, 3d-metal spinel ferrites and core&shell
composites consisting of a ferrimagnetic core and precious metal shell. The
method was called the rotation-corrosion dispergation (RCD) [6]. It is carried
out on the iron or steel electrode surfaces contacting with water salt solutions
under galvanostatic conditions in the open-air systems. The application of the
© O. M. Lavrynenko, O. Yu. Pavlenko, Yu. S. Shchukin, 2015
70
RCD-method permits to obtain various polymorphic iron-oxygen powders
which phase composition and physical-chemical properties may be particularly
regulated by the chemical composition of the water solutions contacting with
the electrode surface [7, 8].
The purpose of our work is to study the phase composition, thermal behavior
and morphology of the nanopowders formed on the steel surface contacting
with nickel- and zink-bearing water chloride, nitrate, and sulfate salt solutions
in the open-air systems under the rotation corrosion dispergation conditions.
Objects and method of the research
The formation of the nanosized iron-oxygen-containing powders on carbon
steel surface via the rotation-corrosion dispergation route was provided by using
a rotating disk electrode that periodically contacted with 3d-metal water salt
solutions and the air [6]. The disk electrode was made of finished steel (St3),
which composition had, %: С — 0,14—0,22; Si — 0,05—0,15; Mn — 0,4—
0,65; Cr — 0,3; Ni — 0,3; P — 0,04; S — 0,05; N — 0,01. The steel surface
was exposed to mechanical treatment and further activation using concentrated
sulfuric acid. The activated disk electrode was repeatedly rinsed in distilled
water and onwards it was placed into the cell filled with the 3d-metal water salt
solution. We chose the following inorganic salt solutions: zinc and nickel
chlorides, nitrates and sulfates as the dispersion medium. The concentration of
the metal cations in water solutions got 100 mg/dm3 and pH value was set 6,5.
The formation of disperse nanostructures on the steel surface lasted 24 h at the
temperatures 20 and 50 °C. The temperature conditions were set using TS-1
/80-SPU thermostat. Afterwards the disk electrode was dried in the air
atmosphere and the surface nanostructures were exposed to a complex physical-
chemical investigation including an X-ray diffraction (XRD) method, thermal
analytical measurements (TG / DTG, DTA) and scanning electron microscopy
(SEM). The phase composition of the surface nanopowders, their thermal
behavior, as well as morphology and the primary particle size of the powder
components were studied in our investigation.
The phase composition of the nanopowders was conducted using computer-
aided X-ray diffractometer (DRON – UM1) equipped with two Soller’s slits and
filtered radiation of cobalt anode CoKα. The rate of recording was set 1 °C/min,
and the interfacial Woolf-Bragg’s angle made up 80—90 degrees. The coherent
scattering region (CSR) characterizing the size of the primary particles or
crystallites was calculated according to the standard Debye-Scherrer’s formula.
A simultaneous study of thermogravimetric and differential thermal
properties (TG-DTA) of the powders was performed in the static air atmosphere
by derivatigraph Q-1500D (Hungary). The record was made using computer
data registration. The parameters of the pattern recording were the following:
the samples of 150 mg were heated at the rate 10 °С/min from 20 to 1000 °С; the
sensitivity was 20 mg; TG — 500, DTG — 500, and DTA — 250. The samples
were placed into a corundum crucible and covered by quartz beaker to create
the equal temperature field.
A scanning electron microscopy (SEM) using JOEL-6700 microscope
equipped with an energy-dispersive and cathode-luminescence attachment to
obtain EDS-spectra was chosen as the main visual method of the research. The
mass ratio of iron to the second 3d-metal (nickel or zinc) in the samples was
71
determined using an X-ray fluorescence spectroscopy (XRFS) carried out in the
automatic spectrometer "ElvaX" equipped with a titanium anode.
Results and discussion
The X-ray diffraction data of the nickel- and zinc-iron-oxygen-containing
powders formed on the steel surface within 24 h at the temperatures 20 and
50 °C are present in fig. 1 and 2, respectively. Also, when the nickel chloride
and nickel nitrate solutions were contacting with activated surface of the steel
electrode at T = 20 °C the obtained powders included three iron-oxygen mineral
phases such as spinel ferrite and polymorphic ferric oxyhydroxides —
lepidocrocite γ-FeOOH and goethite α-FeOOH (fig. 1, a—d). But spinel ferrite
phase got the predominant importance when the temperature was enhanced up
to 50 °C, and under the following conditions both ferric oxyhydroxides were
present in the patterns only as the admixtures. At that the temperature of the
phase formation process strongly influenced not only the phase
composition of the surface powders but their crystallinity degree. Whereas
the powders, especially obtained in NiCl2 and Ni(NO3)2 systems, at T = 20 °C
a b
c d
e f
Fig. 1. XRD-patterns of the powders formed on the steel surface contacting with the
following water salt solutions: a — NiCl2, T = 20 °C; b — NiCl2, T = 50 °C; c —
Ni(NO3)2, T = 20 °C; d — Ni(NO3)2, T = 50 °C; e — NiSO4, T = 20 °C; f — NiSO4,
T = 50 °C, where cNi2+ = 100 mg/dm3, and pH = 6,5. Numbers correspond to the
mineral phases: 1 — lepidocrocite; 2 — spinel ferrite; 3 — goethite; 4 — Ni(II)—
Fe(III)—SO4
2–—LDH.
72
may be characterized as weak crystalline structures, the spinel ferrite particles
formed in the mentioned systems at T = 50 °C were well crystallized.
When nickel sulfate solution was chosen as the dispersion medium the phase
composition of the powders formed at T = 20 °C included the mixed Ni(II)—
Fe(II—III))—SO4
2- layered double hydroxide (LDH) as a main mineral phase
and relatively small amount of ferric oxihydroxides (fig. 1, e). But when the T
of the process was increased to 50 °C the mixed Ni(II)—Fe(II-III)—SO4
2- LDH
as well as spinel ferrite were determined as two main phases in the powders, but
goethite and lepidocrocite played the role of mineral admixtures (fig. 1, f).
According to the lattice parameters the mixed LDH corresponds to
hydrohonessite-like Green Rust II (hydroxysulfate) (JCPDS file No 41-0014),
that keeps stability against further oxidation and phase transformation within a
relatively long term at sufficiently high temperatures.
The analysis of the XRD data obtained for the zinc-containing systems
showed the differences in the comparison with the nickel-containing systems. So,
spinel ferrite and lepidocrocite are present in the patterns of the powders formed
at T = 20 and 50 °C in the zinc chloride systems (fig. 2, a, b). In addition, the
a b
c d
e f
Fig. 2. XRD-patterns of the powders formed on the steel surface contacting with the
following water salt solutions: a — ZnCl2, T = 20 °C, 1 h in water; b — ZnCl2, T =
= 20 °C, 3 h in water; c — ZnSO4, T = 20 °C; d — ZnSO4, T = 50 °C; e —
Zn(NO3)2, T = 20 °C; f — Zn(NO3)2, T = 50 °C, where cZn2+ = 100 mg/dm3, and
pH = 6,5. Numbers correspond to the mineral phases: 1 — Zn(II)—Fe(III)—Cl–—
LDH; 2 — lepidocrocite; 3 — spinel ferrite; 4 — goethite; 5 — Zn(II)—Fe(III)—
SO4
2–—LDH.
73
weak reflexes of mixed Zn(II)—Fe(II—III) LDH related to hydrotalcite-like
Green Rust I (hydroxycarbonate or hydroxychloride) (JCPDS file No 40-0127)
are seen in the first case, and weak goethite peaks appear in the pattern in the
second case. All mineral components of the powders are weakly crystallized.
When the steel surface was contacting with zinc sulfate solutions the mixed
Zn(II)—Fe(II—III)—SO4
2- LDH and lepidocrocite were formed at T = 20 °C
(fig. 2, c), whereas spinel ferrite together with ferric oxihydroxides were formed
at T = 50 °C (fig. 2, d). The powders obtained at both temperatures are
characterized as weak crystallized structures. But when the zinc nitrate solutions
were contacting with steel surface the phase composition of the powders did not
depend on temperature: in both cases the main mineral phase was well
crystallized spinel ferrite. Also, to the first approximation the usage of the metal
(II) nitrate salts permit to obtain homogenous monomineral powders on the steel
surface applying the rotation-corrosion dispergation method.
The crystal lattice parameters and the primary particle size (CSR) of the
powder compounds are present in table 1. As it is clearly seen, the CSR of
lepidocrocite varies from ~10 to ~23 nm and the smallest particles correspond
to chloride systems whereas the biggest particles relate to sulfate systems. The
range of the goethite particle size is narrow in comparison with the previous
case and it equals 14—23 nm. But variation of the magnetite CSR is more
significant and the smallest particles we can see in zinc chloride systems
(~10 nm). Generally, the average particle size of magnetite formed in nickel-
containing systems is bigger than in zinc-containing systems and it equals 22—
28 nm in the first case and ~15—28 nm in the second case.
The mass. % distribution of the metals in the powders formed in the presence
of nickel- and zinc-containing water salt solutions is seen in table 2. Also, the
average ratio Fe to Ni in the chloride and nitrate solutions varies from 96 : 4 to
92 : 8 mass. %, but for sulfate-bearing system it gets 82 (86) : 18 (14) mass. %.
The comparison of nickel- and zinc-containing systems shows the decrease of
iron part in the powders and mass. % ratio Fe : Zn varies from ~85 : 15 to ~70 : 30.
We have chosen four samples to study the thermal behavior of the mineral
powders formed on the steel surface under the RCD conditions in the presence
of nickel and zinc-containing water salt solutions. The in-depth analysis of the
nickel-bearing systems permits to determine the influence of anion composition
on the phase transformation of the powder compounds. Moreover, due to the
presence of the mixed Me(II)—Fe(II—III)—SO4
2– LDH in the phase
composition of the corresponding powders we have analyzed both NiSO4 and
ZnSO4 systems. According to the obtained data we can follow the appearance of
two endoeffects in all DTG curves. The first minimum is fixed in the
temperature range of 110—137 °C and, probably, it corresponds to the loss of
the adsorbed water. The second endothermic peak in the temperature range
of 270—281 °C is related to the hydroxylation of oxyhydroxide lattice and
formation of the iron oxide phases (table 3). But both sulfate-containing
samples show an additional endothermic peak in the temperature range of
622—822 °C. Those thermal effects are accompanied by the mass loss of the
powders on the TG curves (28—30%) probably because of the phase
transformation (dehydroxilation) of mixed LDH and total destruction of SO4
2–-
species. On the contrary, the mass loss of the nitrate- and chloride-containing
samples amounts to only 4,5%. Two exothermic peaks point to the oxidation
74
T a b l e 1. The lattice parameters and primary particle size of the mineral
components of the powders obtained on the steel surface under the RCD
conditions
The characteristic of the mineral phases, nm Salt
solution
T, °C
γ-FeOOH α-FeOOH Fe3O4
20
a = 0,3875
b = 1,2695
c = 0,3022
V = 0,1486
d = 10,4
a = 0,4649
b = 0,9946
c = 0,3027
V = 0,14
d = 14,5
a = 0,8404
V = 0,5935
d = 21,9 NiCl2
50
a = 0,3875
b = 1,2630
c = 0,2922
V = 0,1430
d = 13,3
a = 0,4668
b = 0,9874
c = 0,3007
V = 0,1386
d = 21,0
a = 0,8419
V = 0,5967
d = 28,2
20
a = 0,3876
b = 1,2546
c = 0,3059
V = 0,1482
d = 13,7
a = 0,4630
b = 0,9969
c = 0,3016
V = 0,1392
d = 14,6
a = 0,8370
V = 0,5864
d = 24,8
NiSO4
50
a = 0,3889
b = 1,2608
c = 0,3022
V = 0,1482
d = 20,0
a = 0,4623
b = 0,9868
c = 0,3001
V = 0,1369
d = 18,9
a = 0,8389
V = 0,5904
d = 26,3
20
a = 0,3872
b = 1,2599
c = 0,3029
V = 0,1477
d = 14,3
a = 0,4637
b = 0,9650
c = 0,3022
V = 0,1352
d = 23,2
a = 0,8386
V = 0,5797
d = 21,9
Ni(NO3)2
50 — — — —
a = 0,8399
V = 0,5925
d = 26,3
20
a = 0,3894
b = 1,2527
c = 0,3079
V = 0,1502
d = 8,9
— —
a = 0,8399
V = 0,5925
d = 9,9
ZnCl2
50
a = 0,3876
b = 1,2638
c = 0,3067
V = 0,1502
d = 13,3
— —
a = 0,8395
V = 0,5917
d = 10,4
20
a = 0,3858
b = 1,2692
c = 0,3062
V = 0,1499
d = 21,7
a = 0,4626
b = 1,0106
c = 0,3013
V = 0,1408
d = 16,2
a = 0,8404
V = 0,5936
d = 19,1
ZnSO4
50
a = 0,3855
b = 1,2630
c = 0,3044
V = 0,1482
d = 23,4
a = 0,4636
b = 0,9950
c = 0,3007
V = 0,1387
d = 20,1
a = 0,8397
V = 0,5921
d = 27,4
20 — — — —
a = 0,8403
V = 0,5933
d = 15,8
Zn(NO3)2
50 — — — —
a = 0,8398
V = 0,5923
d = 28,2
ferrous cations in the spinel ferrite lattice and phase transformation of Fe3O4
doped by Ni2+ or Zn2+ into maghemite γ-Fe2O3 at 200—245 °C and polymorphic
transformation of γ-Fe2O3 into hematite α-Fe2O3 at 300—338 °C.
The SEM images of the mineral phases formed on the steel surface
contacting with NiCl2, Ni(NO3)2, and Zn(NO3)2 water solutions are present in
fig. 4. Generally, the morphology of the iron-oxygen surface structures is
similar and it does not depend on the anion composition of the dispersion
medium contacting with the steel surface. Whereas ferric oxyhydroxides are
characterized by plate-like or lamellar shape of the particles (fig. 4, a, e, g, h),
75
T a b l e 2. Distribution of 3d-metals in the powders formed on the steel
surface contacting with nickel and zinc water solutions under the RCD
conditions
Distribution of the metals, mass. %
Salt solution T, °C
Fe Ni or Zn
20 93,9 6,1 NiCl2
50 92,5 7,5
20 82,0 18,0
NiSO4 50 85,9 14,1
20 95,9 4,1
Ni(NO3)2 50 92,1 7,9
20 79,4 20,6
ZnCl2 50 81,3 18,7
20 69,3 30,7
ZnSO4 50 84,1 15,9
20 79,8 20,2
Zn(NO3)2 50 84,9 15,1
a b
c d
Fig. 3. TG-DTA curves of the powders formed on the steel surface contacting with
water salt solutions: a — NiCl2; b — Ni(NO3)2; c — NiSO4; d — ZnSO4.
the spinel ferrites form spherical particles and aggregates (fig. 4, d—g). The
relicts of the mixed Ni(II)—Fe(II—III) LDHs belonging to Green Rust I
structure are seen in fig. 4, b, c. Their morphology can be described as chaotic
disordered plates and lamellas.
The EDS spectra of the mineral phases formed when the steel surface was
contacting with NiCl2 solution are summarized in table 4. Generally, the
average quantity of nickel associated with lepidocrocite phase is ~4,9 mass. %,
its quantity in goethite is ~0,75 mass. %, and in spinel ferrite ~ 8,7 mass. %. The
I,
re
l.
un
.
I,
re
l.
un
.
I,
re
l.
un
.
I,
re
l.
un
.
M
a
ss
l
os
s,
%
M
a
ss
l
os
s,
%
M
a
ss
l
os
s,
%
M
a
ss
.l
os
s,
%
76
T a b l e 3. The characteristic of thermal effects of the powders formed on
the steel surface under the RCD conditions
Endoeffects, °C Exoeffects, °C
The salt
solution H2Oads
Dehyd-
roxilation
LGH
destruction
Fe3O4 →
γ-Fe2O3
γ-Fe2O3 →
α-Fe2O3
Total
mass
loss, %
NiCl2 113 281 — 200 338 4,5
Ni(NO3)2 131 274 — 208 312 4,5
NiSO4 110 270 622—784 238 320 28,2
ZnSO4 137 272 725—822 245 299 30,2
manganese and sulfur admixtures got into mineral phases, probably, from
the material of the steel. The average content of Fe in all probes reaches
~72,78 mass. %, and content of O, respectively, equals ~22,23 mass. %.
Also, the analysis of the experimental data points to the significant effect of
anions of the water salt solutions on the phase compositions of the nanosized
powders formed on the steel surface under the RCD conditions. Depending on
the geometrical shape of anions two types of Fe(II)—Fe(III) layered double
hydroxides (Green Rusts) may be formed on the steel or iron surfaces. Planar
and spherical anions (Cl–, CO3
2–) coordinate iron hydroxide layers as GR I and
three dimension anions (SO4
2–) take place in GR II structure [9]. Such
metastable phases play the role of the precursor species for the various
polymorphic ferric oxides and hydroxides. The presence of 3d-metal cations in
the solutions leads to the exchange processes between Fe(II) of solid phase and
Me2+ of dispersion medium. As a result the more stable mixed Me-Fe LDHs,
inherited the Green Rust structure, appeared among other surface mineral
phases. According to literature data nickel as well as zinc can incorporate into a
Green Rust lattice and form various LDH structures corresponding to the first
[10, 11] and the second [12—14] lattice’s type of Green Rust, respectively.
Whereas Fe(II)—Fe(III) layered double hydroxides under standard conditions
do not keep stability against oxidation and solid state transformation into
lepidocrocite [15] or its dissolution-re-precipitation into magnetite [16], the
mixed LDH structures, due to Fe(II) exchange, lose the possibility for oxidation
and, as a result, for phase transformation.
Hence, one of the mixed LDH applications is their thermal treatment to
obtain chemically pure mixed oxides at T ~ 450—600 °C [17] or spinel ferrites
in the range from T ~ 750 °C [18] to 1100 °C [19]. The formation of pure nickel
spinel ferrites via calcination of tailored hydrotalcite-like hydroxysulfate
layered double hydroxides as a single molecular precursor was mentioned in
[20]. In such case the precursor species was heated at 900 °C for 2 h to obtain
the powder including two phases: α-Fe2O3 and NiO, afterwards the oxide
mixture was sintered at 1100 °C for 10 h and then slowly cooled to the room
temperature. This kind of the procedure is sensitive to metal molar ratios and it
needs to keep certain stoichiometry. But when the molar ratio of Me2+/Fe3+ is
broken the non-stoichiometric iron oxides or magnetite doped by 3d-metal
cations are formed in the system [21].
The comparison of the powders formed via rotation-corrosion dispergation
route on the steel surface contacting with zinc and nickel inorganic salt solution
77
a b
c d
e f
g h
Fig. 4. SEM-images of the surface structures formed on the steel surface under the
rotation-corrosion dispergation conditions in the presence of water salt solutions:
a — the general view of the surface structures (NiCl2); b—c — mixed Ni(II)—
Fe(II—III) LDH; d — spinel ferrite (NixFe(1-x))Fe2O4 (NiCl2); e — the general view
of the surface structures (Ni(NO3)2); f — spinel ferrite (NixFe(1-x))Fe2O4 (Ni(NO3)2);
g, h — lepidocrocite plates and spherical spinel ferrite particles (Zn(NO3)2).
78
T a b l e 4. The chemical composition of the mineral phases formed on the
steel surface contacting with nickel chloride solution
The quantitative analysis of chemical elements, mass. % Mineral
phase
Number of
probe O Fe Ni Mn S
1 22,23 71,65 4,32 1,80 —
2 22,23 69,86 4,88 3,03 —
3 22,23 70,72 5,26 1,80 —
4 22,95 67,83 6,46 1,98 0,79
Lepido-
crocite
5 22,24 71,83 3,52 2,41 —
1 22,27 77,73 — — —
2 22,26 76,70 1,04 — —
3 22,25 75,90 1,85 — —
4 22,26 76,90 0,84 — —
Goethite
5 22,27 77,70 0,03 — —
1 22,14 66,14 11,57 0,14 —
Spinel
ferrite
2 22,21 70,45 5,82 1,51 —
with the products of the thermal transformation of mixed LDH precursors
formed via co-precipitation of respective salts shows a few differences. Namely
the appearance of the spinel ferrites as a single phase on the steel surface is
fixed in the systems where the mixed LDH structures are not formed, for
example Ni(NO3)2 (fig. 1, d) or Zn(NO3)2 (fig. 2, e, f). But when the relatively
stable phase of mixed hydroxysulfate LDHs is formed the spinel ferrite is not
obtained at T = 20 °C (fig. 1, e, 2, c) or co-exists with LDHs and ferric
oxyhydroxides at T = 50 °C (fig. 1, f, 2, d). In our previous work we showed
that the heating of the copper and cobalt-bearing powders formed under the
RCD conditions at T = 740 °C led to the formation of a single hematite phase.
No other oxide peaks were present in the XRD patterns. The XRFS study
confirmed the association of iron and copper or cobalt in the chemical
composition of the powders. Moreover, the relative quantity of the doped metal
remained the same in the wide temperature range (50—740 °C). So, such
powders may be used to obtain monomineral polymorphic ferric oxides
(γ-Fe2O3 and α-Fe2O3) doped by 3d-metal cations.
In addition, the role of cations of the dispersion medium in the formation of
polymorphic ferric oxyhydroxides was widely discussed in the scientific
sources. In conformity with our objects nickel may be included into a goethite
lattice without destruction of its crystal structure [22]. At that zinc cations
protect the lepidocrocite particles against dissolution in ferrous sulfate medium,
but nickel ions do not affect the morphology and crystallinity of γ-FeOOH [23].
Ferrous cations are usually adsorbed on the lepidocrocite surface in water
medium and may be exchanged for nickel cations to form surface-modified iron
oxides [24]. The analysis of our systems confirmed that only γ-FeOOH
appeared on the steel surface contacting with all zinc-containing water
solutions, but both γ- and α-FeOOH co-existed in the phase composition of the
powders when the steel surface was contacting with nickel-containing solutions.
At that, the relative quantity of goethite part was less in comparison with the
lepidocrocite part.
79
Conclusions
The anion composition of the water salt solution contacting with steel
surface under the rotation-corrosion dispergation conditions play an important
role in the formation of not only the phase composition of the disperse surface
powders but their crystallinity as well. Whereas, the usage of zinc and nickel
chlorides leads to obtaining of two or three phases powders including non-
stoichiometric spinel ferrites and ferric oxyhydroxides, nitrate salts permit to
form the single spinel ferrite phase. But in the presence of sulfate solution the
mixed layered double hydroxides appear among powder components.
A thermogravimetric and differential thermal analysis of the powders shows
four thermal effects corresponding to the loss of the adsorbed water in the range
of 110—137 °C, hydroxylation at 270—281 °C, transformation of Fe3O4 doped
by Ni2+ or Zn2+ into maghemite γ-Fe2O3 at 200—245 °C, and polymorphic
transformation of γ-Fe2O3 into hematite α-Fe2O3 at 300—338 °C. But both
sulfate-containing samples show an additional endothermic peak accompanied by
the mass loss (28—30%) in the temperature range of 622—822 °C.
All mineral phases that are present in the powders belong to nano objects
and their primary particle size is 10—23 nm for lepidocrocite, 14—23 nm for
goethite and ~15—28 nm for spinel ferrite. Depending on the chemical
compositions of the water salt solutions the mass. % distribution of the metals
in the powders (Fe : Me) varies from 96 : 4 to ~70 : 30.
The morphology of the iron-oxygen structures included in the powders does not
depend on the anion composition of the dispersion medium contacting with the
steel surface. Particularly ferric oxyhydroxides and mixed Ni(II)—Fe(II-III) LDHs
have a plate-like or lamellar shape, and spinel ferrites form spherical particles.
1. Глинчук М. Д. Наноферроики / М. Д. Глинчук, А. В. Рагуля. — К. : Наук.
думка, 2010.
2. Gupta A. K. Synthesis and surface engineering of iron oxide nanoparticles for
biomedical applications // Biomaterials. — 2005. — 26. — Р. 3995—4021.
3. Шабанова Н. А. Химия и технология нанодисперсных окидов / Н. А. Шаба-
нова, В. В. Попов, П. Д. Саркисов. — М. : ИКЦ "Академкнига", 2006.
4. Teja A. S. Synthesis, properties, and applications of magnetic iron oxide
nanoparticles / A. S. Teja, P.-Y. Koh // Progress in Crystal Growth and
Characterization of Materials. — 2009. — 55 (1–2). — Р. 22—45.
5. Ishikawa T. Influence of metal ions on the structure of poorly crystallized iron
oxide rusts / [T. Ishikawa, T. Ueno, A. Yasukawa et al.] // Corrosion Science. —
2003. — 45. — Р. 1037—1049.
6. Lavrynenko O. M. New rotation-corrosion dispergation method for obtaining of
iron-oxygen nanoparticles / [O. M. Lavrynenko, V. I. Kovalchuk, S. V. Netreba,
Z. R. Ulberg] // Nanostudies. — 2013. — 7. — Р. 295—322.
7. Lavrynenko O. M. The features of the non-stoichiometric cobalt spinel ferrite and
magnetite nanoparticle formation under rotation-corrosion dispergation conditions /
[O. M. Lavrynenko, Yu. S. Shchukin, O. Yu. Pavlenko, P. A. Kosorukov] // Mater.
Sci. of Nanostructures. — 2014. — 1. — Р. 3—26.
8. Lavrynenko O. M. The formation of the non-stoichiometric сopper, zinc and nickel
spinel ferrite nanoparticles under rotation-corrosion dispergation conditions /
[O. M. Lavrynenko, O. Yu. Pavlenko, Yu. S. Shchukin et al.] // Ibid. — 2014. —
2. — Р. 18—37.
9. Génin J.-M. R. Anion and cation distributions in Fe(II—III) hydroxysalt green rusts
from XRD and Mossbauer analysis (carbonate, chloride, sulphate,...); the ‘‘fougerite”
mineral / J.-M. R. Génin, C. Ruby // Solid State Sci. — 2004. — 6. — Р. 705—718.
80
10. Parida K. M. Carbonate intercalated Zn/Fe layered double hydroxide: A novel
photocatalyst for the enhanced photo degradation of azo dyes / K. M. Parida,
L. Mohapatra // Chem. Engineering J. — 2012. — 179. — Р. 131—139.
11. Refait Ph. Mechanisms of oxidation of Ni(II)—Fe(II) hydroxides in chloride-
containing aqueous media: Role of the pyroaurite-type Ni—Fe hydroxychlorides /
Ph. Refait, J.-M. R. Génin // Clay Miner. — 1997. — 32. — Р. 597—613.
12. Ahmed IAM. Formation of hydroxysulphate and hydroxycarbonate green rusts in
the presence of zinc using time-resolved in situ small and wide angle X-ray
scattering / IAM Ahmed, S. Shaw, L. G. Benning // Mineralogical Magazine. —
2008. — 72 (1). — Р. 159—162. DOI: 10.1180/minmag. 2008.072.1.159
13. Garófalo Chaves L. H. Nickel incorporation in Fe(II, III) hydroxysulfate green rust:
effect on crystal lattice spacing and oxidation products / [L. H. Garófalo Chaves,
J. E. Curry, D. A. Stone et al.] // Revista Brasileira de Ciência do Solo. — 2009. —
33 (5). — Р. 1115—1123.
14. Refait Ph. Mechanisms of formation and transformation of Ni—Fe layered double
hydroxides in SO3
2- and SO4
2- containing aqueous solutions / [Ph. Refait, M. Ab-
delmoula, L. Simon, J.-MR. Génin] // J. Phys. Chem. Solids. — 2005. — 66. —
Р. 911—7.
15. Schwertmann U. The formation of green rust and its transformation to lepidocrocite
/ U. Schwertmann, H. Fechter // Clay Minerals. — 1994. — 29. — Р. 87—92.
16. Sumoondur A. Green rust as a precursor for magnetite: an in situ synchrotron based
study / [A. Sumoondur, S. Shaw, I. Ahmed, L. G. Benning] // Mineralogical
Magazine. — 2008. — 72 (1). — Р. 201—204.
17. Vaccari A. Preparation and catalytic properties of cationic and anionic clays //
Catal. Today. — 1998. — 41. — Р. 53—71.
18. Fernández J. M. The effect of iron on the crystalline phases formed upon thermal
decomposition of Mg—Al—Fe hydrotalcites / [J. M. Fernández, M. A. Ulibarri,
F. M. Labajos, V. Rives] // J. Mater. Chem. — 1998. — 8. — Р. 2507—2514.
19. Liu J. Stoichiometric synthesis of a pure ferrite from a tailored layered double
hydroxide (hydrotalcite-like) precursor / [J. Liu, F. Li, D. G. Evans, X. Duan] //
Chem. Commun. — 2003. — Р. 542—543.
20. Li F. Stoichiometric synthesis of pure MFe2O4 (M Mg, Co, and Ni) spinel ferrites
from tailored layered double hydroxide (hydrotalcite-like) precursors / [F. Li,
J. Liu, D. G. Evans, X. Duan] // Chem. Mater. — 2004. — 16. — Р. 1597—1602.
21. Ishikawa T. Structure and properties of magnetite formed in the presence of
nickel(II) ions / [T. Ishikawa, H. Nakazaki, A. Yasukawa et al.] // Mater. Res.
Bulletin. — 1998. — 33 (11). — Р. 1609—1619.
22. Inouye K. The effect of copper (II) on the formation of γ-FeOOH / [K. Inouye,
K. Ichimura, K. Kaneko, T. Ishikawa] // Corrosion Sci. — 1976. — 6. — 507 р.
23. Ishikawa T. Structure of nickel-doped α-FeOOH / T. Ishikawa, A. Nagashima,
K. Kandori // J. Mater. Sci. — 1991. — 26. — Р. 6231—36.
24. Taylor R. M. The influence of aluminum on iron oxides. VI. The formation of
Fe(II)—AI(III) hydroxychlorides, -sulfates, and -carbonates as new members of the
pyroaurite group and their significance in soils / R. M. Taylor, R. M. McKenzie //
Clays Clay Miner. — 1980 — 28. — Р. 179—87.
Характеристика цинк- и никельсодержащих железо-
кислородных нанофаз, полученных на поверхности стали
в условиях ротационно-коррозионного диспергирования
Е. Н. Лавриненко, О. Ю. Павленко, Ю. С. Щукин
Наноразмерные смеси железо-кислородных фаз получены на поверхности стали,
контактирующей с водными растворами неорганических солей цинка и никеля, в
условиях ротационно-коррозионного диспергирования. Смеси исследованы
81
методами рентгенофазового анализа, дифференциального термического анализа
(ТГ / ДТГ, ДТА) и сканирующей электронной микроскопии. Показано, что при
использовании в качестве дисперсионной среды растворов нитратов цинка и
никеля образуется единственная минеральная фаза нестехиометрической
ферришпинели. В то же время в присутствии Cl–-cодержащих растворов в
составе порошков определены три минеральные фазы (ферришпинель,
лепидокрокит и гетит). При использовании в качестве дисперсионной среды
SO4
2–-содержащих растворов в составе порошков одновременно с другими
фазами образуются смешанные слоистые двойные гидроксиды (СДГ) железа и
цинка или никеля. Обмен катионами Fe(II) и 3d-металлов между дисперсной
фазой и дисперсионной средой приводит к стабилизации структуры СДГ, что
значительно усложняет получение при их термической трансформации
мономинеральных фаз ферришпинелей или оксидов железа.
Ключевые слова: метод ротационно-коррозионного диспергирования, нестехио-
метрические Zn- и Ni-содержащие ферришпинели, смешанные слоистые двойные
гидроксиды, нанопорошки.
Характеристика цинк- і нікелевмісних залізокисневих
нанофаз, отриманих на поверхні сталі в умовах
ротаційно-корозійного диспергування
О. М. Лавриненко, О. Ю. Павленко, Ю. С. Щукін
Нанорозмірні суміші залізокисневих фаз отримані за умов ротаційно-корозійного
диспергування на поверхні сталі, яка контактує з водними розчинами
неорганічних солей цинку і нікелю. Їх будо досліджено методами рентгено-
фазового аналізу, диференційного термічного аналізу (ТГ / ДТГ, ДТА) і сканівної
електронної мікроскопії. Показано, що при використанні у якості дисперсійного
середовища розчинів нітратів цинку та нікелю у складі порошків утворюється
єдина мінеральна фаза нестехіометричної феришпінелі. Водночас у присутності
Cl–-вмісних розчинів у складі порошків визначено три мінеральні фази
(феришпінель, лепідокрокіт і гетит). При використанні у якості дисперсійного
середовища SO4
2–-вмісних розчинів у складі порошків, одночасно з іншими фазами
з’являються змішані шаруваті подвійні гідроксиди (ШПГ) железа та цинку або
нікеля. Обмін катіонами Fe(II) і 3d-металів між дисперсною фазою та
дисперсійним середовищем веде до стабілізації структури ШПГ, що значною
мірою ускладнює отримання при їх термічному перетворенні мономінеральних
фаз феришпінелей та оксидів железа.
Ключові слова: метод ротаційно-корозійного диспергування, нестехіометричні
Zn- і Ni-вмісні феришпінелі, змішані шаруваті подвійні гідроксиди, нанопорошки.
|