Численное исследование взаимодействия внутренних уединенных волн второй бароклинной моды при их фронтальном столкновении

Рассматривается задача о фронтальном столкновении внутренних уединенных волн второй моды. Численные эксперименты показали наличие нескольких типов взаимодействия в зависимости от нормированной на толщину слоя раздела амплитуды волны второй моды. В случае взаимодействия слабо нелинейных волн они сохр...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Терлецкая, Е., Мадерич, В., Бровченко, И.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут гідромеханіки НАН України 2015
Schriftenreihe:Прикладна гідромеханіка
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/116532
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Численное исследование взаимодействия внутренних уединенных волн второй бароклинной моды при их фронтальном столкновении / Е. Терлецкая, В. Мадерич, И. Бровченко // Прикладна гідромеханіка. — 2015. — Т. 17, № 3. — С. 44-54. — Бібліогр.: 34 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Рассматривается задача о фронтальном столкновении внутренних уединенных волн второй моды. Численные эксперименты показали наличие нескольких типов взаимодействия в зависимости от нормированной на толщину слоя раздела амплитуды волны второй моды. В случае взаимодействия слабо нелинейных волн они сохраняют свой профиль, амплитуда уменьшается в основном за счет вязкого трения и присутствует небольшой фазовый сдвиг. Особенностью взаимодействия переносящих массу волн при числе Фруда, близком к критическому, оказывается то, что волны до соударения являются волнами переносящими массу, а после соударения они трансформируются в слабо нелинейные волны. Взаимодействие устойчивых, переносящих массу волн происходит таким образом, что взаимодействующие волны проходят дальше, частично захватывая окрашенную жидкость в ядрах. При дальнейшем увеличении амплитуд волн с захваченным ядром, при соударении минимальные числа Ричардсона в волнах падают ниже значений 0.12, что приводит к формированию неустойчивости Кельвина-Гельмгольца. Внутри отразившихся и захваченных волнами ядер происходит интенсивное перемешивание, что приводит к росту потерь энергии.