Some Sharp Estimates for Convex Hypersurfaces of Pinched Normal Curvature

For a convex domain D bounded by the hypersurface ∂D in a space of constant curvature we give sharp bounds on the width R - r of a spherical shell with radii R and r that can enclose ∂D, provided that normal curvatures of ∂D are pinched by two positive constants. Furthermore, in the Euclidean case w...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Журнал математической физики, анализа, геометрии
Дата:2015
Автор: Drach, K.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/118022
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some Sharp Estimates for Convex Hypersurfaces of Pinched Normal Curvature / K. Drach // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 2. — С. 111-122. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For a convex domain D bounded by the hypersurface ∂D in a space of constant curvature we give sharp bounds on the width R - r of a spherical shell with radii R and r that can enclose ∂D, provided that normal curvatures of ∂D are pinched by two positive constants. Furthermore, in the Euclidean case we also present sharp estimates for the quotient R/r. From the obtained estimates we derive stability results for almost umbilical hypersurfaces in the constant curvature spaces. В пространствах постоянной кривизны получены точные оценки для ширины R — r сферического слоя с радиусами R и r, в который можно поместить гиперповерхность ∂D, ограничивающую выпуклую область D, при учете, что нормальные кривизны ∂D зажаты между двумя положительными константами. В евклидовом случае также приведена точная оценка для отношения R/r. Из найденных оценок получены результаты по устойчивости почти омбилических гиперповерхностей в пространствах постоянной кривизны. У просторах сталої кривини отримано точні оцінки для ширини R — r сферичного шару з радіусами R та r, в який можна помістити гіперповерхнго ∂D, що обмежує опуклу область D, за умови, що нормалвні кривини ∂D, зажаті між двома додатними константами. У випадку евклідового простору також наведена точна оцінка для відношення R/r. 3 оцінок, що були знайдені, отримано результати зі стійкості майже омбілічних гіперповерхонв у просторах сталої кривини.
ISSN:1812-9471