Ferromagnetic resonance driven by an ac current: a brief review

Excitation of ferromagnetic resonance (FMR) by an ac current has been observed in macroscopic ferromagnetic films for decades and typically relies on the ac Oersted field of the current to drive magnetic moments into precession and classical rectification of ac signals to detect the resonance. Rec...

Full description

Saved in:
Bibliographic Details
Date:2013
Main Authors: Wang, C., Seinige, H., Tsoi, M.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Series:Физика низких температур
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/118222
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Ferromagnetic resonance driven by an ac current: a brief review / C. Wang, H. Seinige, M. Tsoi // Физика низких температур. — 2013. — Т. 39, № 3. — С. 320–325. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Excitation of ferromagnetic resonance (FMR) by an ac current has been observed in macroscopic ferromagnetic films for decades and typically relies on the ac Oersted field of the current to drive magnetic moments into precession and classical rectification of ac signals to detect the resonance. Recently, current-driven ferromagnetic resonances have attracted renewed attention with the discovery of the spin-transfer torque (STT) effect due to its potential applications in magnetic memory and microwave technologies. Here STT associated with the ac current is used to drive magnetodynamics on the nanoscale that enables FMR studies in sample volumes smaller by a factor of 1000 compared to conventional resonance techniques. In this paper, we briefly review the basics of STT–FMR technique and the results of various STT–FMR experiments.