One-magnon and exciton inelastic light scattering in the antiferromagnet CoF₂

Experimental data are reported for the temperature and polarization dependence of the one-magnon Raman light scattering in the rutile-structure antiferromagnet CoF₂ (Néel temperature TN = 38 K). The low-lying excitons are also investigated at low temperatures and comparisons made with results from e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Meloche, E., Cottam, M.G., Lockwood, D.J.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/119410
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:One-magnon and exciton inelastic light scattering in the antiferromagnet CoF₂ / E. Meloche, M.G. Cottam, D.J. Lockwood // Физика низких температур. — 2014. — Т. 40, № 2. — С. 173-186. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Experimental data are reported for the temperature and polarization dependence of the one-magnon Raman light scattering in the rutile-structure antiferromagnet CoF₂ (Néel temperature TN = 38 K). The low-lying excitons are also investigated at low temperatures and comparisons made with results from earlier Raman, infrared, and neutron scattering work. A detailed analysis of the one-magnon Stokes and anti-Stokes Raman spectra is presented resulting in comprehensive data for the temperature variation up to TN of the one-magnon frequency, line width, and integrated intensity. A theory of the one-magnon scattering and other magnetic transitions is constructed based mainly on a spin S = 3/2 exchange model, extending a simpler effective S = 1/2 approach. The excitation energies and spectral intensities over a broad range of temperatures are obtained using a Green's function equation of motion method that allows for a careful treatment of the single-ion anisotropy. Overall the S = 3/2 theory compares well with the experimental data.