Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method

Infinite sets of inequalities which generalize all the known inequalities that can be used in the majorization step of the Approximating Hamiltonian method are derived. They provide upper bounds on the difference between the quadratic fluctuations of intensive observables of a N-particle system and...

Full description

Saved in:
Bibliographic Details
Published in:Condensed Matter Physics
Date:2011
Main Authors: Brankov, J.G., Tonchev, N.S.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2011
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/119801
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Generalized inequalities for the Bogoliubov-Duhamel inner product with applications in the Approximating Hamiltonian Method / J.G. Brankov, N.S. Tonchev // Condensed Matter Physics. — 2011. — Т. 14, № 1. — С. 13003: 1-17. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine