Monte Carlo simulation of phase equilibria in Ising fluids and their mixtures

The mean field theory for the pure Ising fluid was recently extended to binary mixtures of an Ising and a van der Waals fluid. Depending on the relative interaction strengths, their three dimensional phase diagrams show lines of tricritical consolute and plait points, lines of critical end points...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Fenz, W., Folk, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2003
Назва видання:Condensed Matter Physics
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/120766
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Monte Carlo simulation of phase equilibria in Ising fluids and their mixtures / W. Fenz, R. Folk // Condensed Matter Physics. — 2003. — Т. 6, № 4(36). — С. 675-686. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The mean field theory for the pure Ising fluid was recently extended to binary mixtures of an Ising and a van der Waals fluid. Depending on the relative interaction strengths, their three dimensional phase diagrams show lines of tricritical consolute and plait points, lines of critical end points and magnetic consolute point lines. Our current efforts are to compare these mean field results with different Monte Carlo simulation techniques, investigating both first order (liquid-vapor and demixing) and second order (paramagneticferromagnetic) phase transitions. We show the resulting ρ, T phase diagrams of the pure Ising fluid for different magnetic interaction strengths R and constant pressure cross-sections of the x, T, p phase diagrams of Ising mixtures for different relative interaction strengths. The methods we have used include Gibbs Ensemble MC, Multihistogram Reweighting, Hyper-parallel Tempering, the cumulant intersection method and the newly developed Density of States MC technique.