Energy spectrum and phase diagrams of two-sublattice hard-core boson model
The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in su...
Збережено в:
| Опубліковано в: : | Condensed Matter Physics |
|---|---|
| Дата: | 2013 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут фізики конденсованих систем НАН України
2013
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/120812 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Energy spectrum and phase diagrams of two-sublattice hard-core boson model / I.V. Stasyuk, O. Vorobyov // Condensed Matter Physics. — 2013. — Т. 16, № 2. — С. 23005:1-9. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-120812 |
|---|---|
| record_format |
dspace |
| spelling |
Stasyuk, I.V. Vorobyov, O. 2017-06-13T05:07:01Z 2017-06-13T05:07:01Z 2013 Energy spectrum and phase diagrams of two-sublattice hard-core boson model / I.V. Stasyuk, O. Vorobyov // Condensed Matter Physics. — 2013. — Т. 16, № 2. — С. 23005:1-9. — Бібліогр.: 19 назв. — англ. 1607-324X PACS: 03.75.Hh,03.75.Lm,71.35.Lk DOI:10.5488/CMP.16.23005 arXiv:1307.2005 https://nasplib.isofts.kiev.ua/handle/123456789/120812 The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI) or charge-density (CDW) phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase) are built. Для двопiдґраткової моделi жорстких бозонiв в рамках наближення хаотичних фаз розраховано енергетичний спектр i спектральнi густини у рiзних фазах та побудовано фазовi дiаграми. Дослiджено перебудову бозонного спектру при змiнi температури, хiмiчного потенцiалу та рiзницi енергiй локальних позицiй у пiдґратках. Побудовано фазовi дiаграми, якi iлюструють областi iснування нормальної фази, що може бути подiбною до фази моттiвського дiелектрика (MI) чи зарядового впорядкування (CDW), а також фази з бозе-конденсатом (фази SF). en Інститут фізики конденсованих систем НАН України Condensed Matter Physics Energy spectrum and phase diagrams of two-sublattice hard-core boson model Енергетичний спектр i фазовi дiаграми двопiдґраткової моделi жорстких бозонiв Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Energy spectrum and phase diagrams of two-sublattice hard-core boson model |
| spellingShingle |
Energy spectrum and phase diagrams of two-sublattice hard-core boson model Stasyuk, I.V. Vorobyov, O. |
| title_short |
Energy spectrum and phase diagrams of two-sublattice hard-core boson model |
| title_full |
Energy spectrum and phase diagrams of two-sublattice hard-core boson model |
| title_fullStr |
Energy spectrum and phase diagrams of two-sublattice hard-core boson model |
| title_full_unstemmed |
Energy spectrum and phase diagrams of two-sublattice hard-core boson model |
| title_sort |
energy spectrum and phase diagrams of two-sublattice hard-core boson model |
| author |
Stasyuk, I.V. Vorobyov, O. |
| author_facet |
Stasyuk, I.V. Vorobyov, O. |
| publishDate |
2013 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Енергетичний спектр i фазовi дiаграми двопiдґраткової моделi жорстких бозонiв |
| description |
The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI) or charge-density (CDW) phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase) are built.
Для двопiдґраткової моделi жорстких бозонiв в рамках наближення хаотичних фаз розраховано енергетичний спектр i спектральнi густини у рiзних фазах та побудовано фазовi дiаграми. Дослiджено перебудову бозонного спектру при змiнi температури, хiмiчного потенцiалу та рiзницi енергiй локальних позицiй у пiдґратках. Побудовано фазовi дiаграми, якi iлюструють областi iснування нормальної фази, що може бути подiбною до фази моттiвського дiелектрика (MI) чи зарядового впорядкування (CDW), а також фази з бозе-конденсатом (фази SF).
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/120812 |
| citation_txt |
Energy spectrum and phase diagrams of two-sublattice hard-core boson model / I.V. Stasyuk, O. Vorobyov // Condensed Matter Physics. — 2013. — Т. 16, № 2. — С. 23005:1-9. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT stasyukiv energyspectrumandphasediagramsoftwosublatticehardcorebosonmodel AT vorobyovo energyspectrumandphasediagramsoftwosublatticehardcorebosonmodel AT stasyukiv energetičniispektrifazovidiagramidvopidgratkovoímodeližorstkihbozoniv AT vorobyovo energetičniispektrifazovidiagramidvopidgratkovoímodeližorstkihbozoniv |
| first_indexed |
2025-11-26T13:13:19Z |
| last_indexed |
2025-11-26T13:13:19Z |
| _version_ |
1850622216992980992 |
| fulltext |
Condensed Matter Physics, 2013, Vol. 16, No 2, 23005: 1–9
DOI: 10.5488/CMP.16.23005
http://www.icmp.lviv.ua/journal
Energy spectrum and phase diagrams of
two-sublattice hard-core boson model
I.V. Stasyuk, O. Vorobyov
Institute for Condensed Matter Physics National academy of Sciences of Ukraine,
1 Sventsitskii St., 79011 Lviv, Ukraine
Received March 14, 2013, in final form March 29, 2013
The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core
boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the
change of temperature, chemical potential and energy difference between local positions in sublattices is stud-
ied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-
insulator (MI) or charge-density (CDW) phases as well as the phase with the Bose-Einstein condensate (SF phase)
are built.
Key words: hard-core bosons, spectral density, phase diagrams
PACS: 03.75.Hh, 03.75.Lm, 71.35.Lk
1. Introduction
Lattice Bose-gas model based on the hard-core bosons approach (the site occupancy ni = 0,1) has a
wide range of possible applications starting from quantum effects in liquid He [1, 2]. This model was also
applied to superconducting gas of Cooper electron pairs [3], physical properties of Josephson junctions
[4], thermodynamics and energy spectrum of crystals with ionic conductivity [5, 6]. In recent years the
hard-core boson approach has gained popularity in connection with investigations of ultra-cold atoms in
optical lattices. At an arbitrary occupation of local particle positions optical lattices are usually described
with Bose-Hubbardmodel (see [7] for review). In U →∞ limit of this model, when potential wells are ex-
tremely deep, Bose-Hubbardmodel turns to hard-core boson model. In this paper we consider this model
for the lattice with non-equivalent sites, particularly in the simplest case of two-sublattice structure. Such
structures can be easily realized in optical lattices [8] and are also observed in the case of adsorption of
hydrogen atoms on the surface of metals (the quantum surface diffusion of protons is described bymeans
of Bose-Hubbard model [9, 10]). Crystal lattice is supposed to be centrosymmetrical of cubic type. Parti-
cles have different local site energies on each of two sublattices (εA , εB , where A and B are sublattice
indices). This model has been investigated in connection with thermodynamic properties of Bose atoms
in complex optical lattices [11–13].
The main focus of our paper is to study the conditions of Bose-Einstein (BE) condensation and to
construct the corresponding phase diagrams. Our goal is to investigate the energy spectrum and one-
particle spectral densities as well as the changes of their shapes as the system enters various phases that
include the phase with BE condensate (also called superfluid or SF) and normal phase of the so-called
Mott-insulator (MI) or charge-density wave (CDW) type. We use two-time Green’s function technique and
random phase approximation (RPA). A similar approach has been used recently in [14].
© I.V. Stasyuk, O. Vorobyov, 2013 23005-1
http://dx.doi.org/10.5488/CMP.16.23005
http://www.icmp.lviv.ua/journal
I.V. Stasyuk, O. Vorobyov
2. Boson Green’s functions and phase diagrams
The Hamiltonian of noninteracting hard-core bosons on a lattice is as follows:
Ĥ =−
∑
i j
ti j b+
i b j + (ε0 −µ)
∑
i
ni , (2.1)
where ti j is the boson hopping parameter and bi , b+
i
are Pauli operators. We proceed to pseudospins
(bi = S+
i
, b+
i
= Si ) and generalize the model for two sublattices (i = n.α; α= A,B ; ε0 = εA, εB):
Ĥ =−
∑
nα
∑
n′β
J
αβ
nn′
(
Sx
nαSx
n′β+S
y
nαS
y
n′β
)
−
∑
α
hα
∑
n
Sz
nα . (2.2)
The parameter of “transversal” interaction between pseudospins J
αβ
nn′ describes the transfer of par-
ticles between nearest neighbours in the lattice; hα = εα−µ is the “field” acting on the pseudospin in α
sublattice.
To start with, we consider the mean-field Hamiltonian
ĤMF =−
∑
nα
∑
n′β
(
J
αβ
nn′ + J
βα
n′n
)
〈Sx
β〉S
x
nα−
∑
α
hα
∑
n
Sz
nα (2.3)
which is diagonalized with the rotation transformation
Sz
nα = σz
nα cosϑα+σx
nα sinϑα ,
Sx
nα = σx
nα cosϑα−σz
nα sinϑα (2.4)
and takes the form ĤMF =−
∑
nα Eασ
z
nα.
The following equations define the angles ϑα:
hA sinϑA −〈σz
B〉JA(0)cosϑA sinϑB = 0,
hB sinϑB −〈σz
A〉JB(0)cosϑB sinϑA = 0. (2.5)
Here, Jα(0) =
∑
n′β
(
J
αβ
nn′ + J
βα
n′n
)
; in the case of structurally equivalent sublattices JA(0) = JB(0) ≡ J (0).
The trivial solution sinϑA = 0, sinϑB = 0 defines the normal phase (like MI or CDW), while at sinϑα ,
0 the SF phase exists. For SF phase, the order parameter 〈Sx
α〉 is not equal to zero (because 〈Sx
α〉 =
−〈σx
α〉sinϑα).
For nontrivial solution we have
sin
2ϑα =
〈σz
α〉
2〈σz
β
〉2 J 4(0)−h2
αh2
β
〈σz
α〉
2 J 2(0)[h2
α+〈σz
β
〉2 J 2(0)]
. (2.6)
Here and below, β,α. In the mean-field approximation
〈σz
α〉 =
1
2
tanh
βEα
2
, (2.7)
where
Eα = hα cosϑα+〈σz
β〉J (0)sinϑα sinϑβ = 〈σz
α〉J (0)
√
h2
α+〈σz
β
〉2 J 2(0)
√
h2
β
+〈σz
α〉
2 J 2(0)
. (2.8)
The set of equations (2.7) and (2.8) defines the pseudospin averages 〈σz
A
〉, 〈σz
B
〉 and internal fields EA, EB.
On the other hand, in the case of normal phase
Eα = hα , 〈σz
α〉 =
1
2
tanh
βhα
2
. (2.9)
23005-2
Energy spectrum and phase diagrams two-sublattice hard-core boson model
The condition of transition to SF-phase is the divergence of boson Green’s function 〈〈S+|S−〉〉q,ω at zero
frequency and ~q = 0 (as we approach SF phase boundary from any of normal phases).
To construct the equations for pseudospin Green’s functions, we use the linearized equations of mo-
tion for ~σnα operators
[
σx
lα, Ĥ
]
= Eαiσ
y
iα−
〈
σz
α
〉
∑
n′
(
J
αβ
ln′ + J
βα
n′l
)
iσ
y
n′β
,
[
σ
y
lα
, Ĥ
]
=−Eαiσx
iα+
〈
σz
α
〉
∑
n′
(
J
αβ
ln′ + J
βα
n′l
)
cosϑA cosϑBiσx
n′β ,
[
σz
lα, Ĥ
]
= 0 (2.10)
(these equations were written using RPA decoupling). It is taken into account that interaction J
αβ
nn′ (parti-
cle hopping) takes place between lattice sites from different sublattices.
As a result, we obtain the following set of equations for pseudospin Green’s functions
ħω〈〈σx
lα|σ
x
l ′γ〉〉 = iEα〈〈σ
y
lα
|σx
l ′γ〉〉− i
〈
σz
α
〉
∑
n′
(
J
αβ
ln′ + J
βα
n′l
)
〈〈σ
y
n′β
|σx
l ′γ〉〉,
ħω〈〈σ
y
lα
|σx
l ′γ〉〉 = −i
ħ
2π
δl l ′δαγ
〈
σz
α
〉
− iEα〈〈σ
x
lα|σ
x
l ′γ〉〉+ i
〈
σz
α
〉
∑
n′
(
L
αβ
ln′ +L
βα
n′ l
)
〈〈σx
n′β|σ
x
l ′γ〉〉, (2.11)
where
LAB
ln′ = J AB
ln′ cosϑA cosϑB . (2.12)
After Fourier transformation of pseudospin interaction matrix
J
(
~q
)
=
∑
n−n′
(
J AB
nn′ + J B A
n′n
)
e
i~q
(
~RnA−~Rn′B
)
(2.13)
as well as Green’s functions 〈〈σα|σβ〉〉we obtain, in particular, the following equations
ħωGxx
AA = iEAG
y x
AA
− i
〈
σz
A
〉
J
(
~q
)
G
y x
BA
,
ħωG
y x
AA
= −i
ħ
2π
〈
σz
A
〉
− iEAGxx
AA + i
〈
σz
A
〉
L
(
~q
)
Gxx
BA ,
ħωGxx
BA = iEBG
y x
BA
− i
〈
σz
B
〉
J
(
~q
)
G
y x
AA
,
ħωG
y x
BA
= −iEBGxx
BA + i
〈
σz
B
〉
L
(
~q
)
Gxx
AA . (2.14)
The system of equations (2.14) can be easily solved to obtain the expressions for matrix Green’s func-
tions 〈〈σ
µ
α|σ
ν
γ〉〉q,w and 〈〈S
µ
α|S
ν
γ〉〉q,w , (we can calculate the latter using relations (2.4)). Here, µ and ν
indices denote +,−,z components.
3. Boson spectrum in normal phase and phase diagrams
Let us consider the one-particle boson Green‘s function 〈〈bα|b
+
β
〉〉q,w = 〈〈S+
α|S
−
β
〉〉q,w . In the normal
phase case 〈〈S+
α|S
−
β
〉〉q,w = 〈〈σ+
α|σ
−
β
〉〉q,w . For α=β, we have the following result
G+−
αα (~q, w) ≡ 〈〈σ+
α|σ
−
α〉〉q,w =
ħ
π
〈
σz
α
〉 ħω−Eβ
(ħω−Eα)(ħω−Eβ)−Φq
, (3.1)
derived from equations (2.14). Here, Φq =
〈
σz
A
〉〈
σz
B
〉
J 2
(
~q
)
.
The boson excitation spectrum is defined from the poles of the G+−
αα function
ε(NO)
1,2
(~q) = h±
√
δ2 +
〈
σz
A
〉〈
σz
B
〉
J 2(~q) . (3.2)
We have introduced the general notations h =
EA+EB
2
; δ=
EA−EB
2
. In normal phases h =
hA+hB
2
; δ=
hA−hB
2
.
23005-3
I.V. Stasyuk, O. Vorobyov
The features of the obtained spectrum may vary depending on the values of the model parameters:
For δ= 0 (A and B positions are equivalent; crystal is not split to sublattices and the unit cell is two times
smaller):
ε(NO)
1,2
(~q) = h±
∣
∣
〈
σz
〉∣
∣ J (~q),
〈
σz
〉
=
1
2
tanh
βh
2
. (3.3)
There is only one band ε(~q) = h−〈σz〉 J (~q) inside the two times bigger Brillouin zone.
For δ, 0; δ> 0. There are two bands in this case. The edges of the bands are defined by the inequalities
which depend on the sign of
〈
σz
A
〉〈
σz
B
〉
= 1
4
tanh
β
2
(h+δ) tanh
β
2
(h−δ) expression:
h+δ< ε1(~q) < h+
√
δ2 +
〈
σz
A
〉〈
σz
B
〉
J 2(0)
h−
√
δ2 +
〈
σz
A
〉〈
σz
B
〉
J 2(0) < ε2(~q)< h−δ
〈
σz
A
〉〈
σz
B
〉
> 0
and
h+
√
δ2 +
〈
σz
A
〉〈
σz
B
〉
J 2(0) < ε1(~q) < h+δ
h−δ< ε2(~q) < h−
√
δ2 +
〈
σz
A
〉〈
σz
B
〉
J 2(0)
〈
σz
A
〉〈
σz
B
〉
< 0.
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0
0.5
1.0
1.5
2.0
3
1
h=1
q a
a MI
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
q a
4
3
2
hA/2+hB/2=0.7
b SF
1
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.5
0.0
0.5
1.0
3
1
h=0.3
q a
c CDW
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2.0
-1.5
-1.0
-0.5
0.0
3
1
h=-1
q a
d MI
Figure 1. Dispersion laws ε(q) for different phases. Dashed line denotes the chemical potential level.
The Fourier transform J (~q) = 1
z J (0)
z
∑
α=1
cos qαa is used with the aim of illustration. J (0) is chosen as the
energy unit. T ≡ 1/β= 0.05,δ = 0.8. The numbers indicate the corresponding branches. For SF phase: 1 –
ε1, 2 – ε2 , 3 – ε3, 4 – ε4. For MI and CDW phases: 1 – ε1, 3 – ε2.
23005-4
Energy spectrum and phase diagrams two-sublattice hard-core boson model
In the first case (〈σz
A
〉〈σz
B
〉 > 0), which holds for h −δ > 0, two different bands always exist; the gap
between these bands disappears as δ→ 0. The chemical potential (which is located on the energy scale
at ε = 0 point) is placed either higher or lower than the bands ε1(~q) and ε2(~q) [figures 1 (a), 1 (d)]. In
the second case (〈σz
A
〉〈σz
B
〉 < 0), which corresponds to the inequalities h −δ < 0; h +δ > 0, two different
bands exist only at δ >
√
|〈σz
A
〉〈σz
B
〉|J (0). The gap disappears when this condition is violated [at T = 0
this happens at δ = δc ≡
1
2
J (0)]. When the bands are separated in normal phase, the chemical potential
is located between the bands [figure 1 (c)]. The instability connected with SF transition takes place when
the level of chemical potential touches the edge of one of the bands that may be driven either by the
temperature, chemical potential or energy difference δ change. At J (0) > 0 (ti j > 0), this always happens
in the ~q = 0 point. The condition for this is as follows:
h2
= δ2
+
〈
σz
A
〉〈
σz
B
〉
J 2
(0). (3.4)
Two equations derived from this relation allow us to construct the phase diagrams in (J (0),h) and
(T,h) planes that show the areas of SF and normal (MI, CDW) phases. Diagram in figure 2 illustrates the
change of the shape of phase boundary curve on (J (0),h) plane as the temperature increases (at T = 0,
the phase boundary curve corresponds to the one obtained in [11, 12]). The definitive boundary between
MI and CDW regions exists only at zero temperature. In this case, MI and CDW states can be interpreted
as different phases. When one departs from T = 0 limit, this boundary disappears and one may observe a
single normal phase. However, this normal phase is close to either MI or CDWphases in different regions
of phase diagram (also see below).
-2 -1 0 1 2
0
1
2
3
4
SF
MIMI
5
4
3
J(
0)
/
h/
1
2
CDW
-1.0 -0.5 0.0 0.5 1.0
0.00
0.05
0.10
0.15
0.20
0.25
MI MI
CDW
SF SF
MI MI
1
2
3
4
5
6
T/
J(
0)
h/J(0)
SF
Figure 2. Phase diagram of two-sublattice model
of hard-core bosons for different temperatures:
1. T = 0.00005, 2. T = 0.05, 3. T = 0.15, 4. T = 0.2,
5. T = 0.5. Energy quantities aremeasured in units
of δ= (εA −εB)/2.
Figure 3. Phase diagram (T,h) at various values of
δ: 1. δ = 0.1, 2. δ = 0.3, 3. δ = 0.48, 4. δ = 0.499,
5. δ= 0.501, 6. δ= 0.8. Energy quantities are mea-
sured in units of J (0).
If the existing critical value of the difference of sublattice local energies (δ= δc) is exceeded, it leads
to the splitting of the SF-phase area on (T,h) plain (figure 3). This result is in agreement with the papers
mentioned above, where all calculations were performed only at T = 0. Therefore, at δ > δc, there are
two critical points for T , 0.
For intermediate values of chemical potential, the normal phase is similar to the charge ordered phase
(CDW) while at large positive (or negative) values of h this phase is of Mott-insulator (MI) type. This
conclusion is confirmed by one-particle spectral density ρα(ω) calculations. We use the relation
ρα(ω)=−
1
N
∑
q
2Im〈〈S+
α|S
−
α〉〉q,ω+iε =
2
N
∑
q
〈
σz
α
〉
{
Aα
1 (~q)δ
[
ω−
ε1(~q)
ħ
]
+ Aα
2 (~q)δ
[
ω−
ε2(~q)
ħ
]}
,
which follows from the decomposition into partial fractions.
23005-5
I.V. Stasyuk, O. Vorobyov
Here,
AA
1,2(~q) =
1
2
±
δ
2
√
δ2 +Φq
,
while expression for AB
1,2
(~q) is derived from AA
1,2
(~q) by A⇄B (δ→−δ) substitution.
Using non-perturbative density of states
ρ0(z)=
1
N
∑
q
δ
[
z − J (~q)
]
,
we can rewrite the expression (3.5) for α= A
ρA(ω) = 2〈σz
a〉
J(0)
∫
−J(0)
dzρ0(z)
1
2
+
δ
2
√
δ2+
〈
σz
A
〉〈
σz
B
〉
z2
δ
[
ω−
1
ħ
(
h+
√
δ2+
〈
σz
A
〉〈
σz
B
〉
z2
)
]
+
1
2
−
δ
2
√
δ2+
〈
σz
A
〉〈
σz
B
〉
z2
δ
[
ω−
1
ħ
(
h−
√
δ2+
〈
σz
A
〉〈
σz
B
〉
z2
)
]
. (3.5)
When performing numerical calculations, we use the semi-elliptical function ρ0(z)= 1
πJ2(0)
√
J 2(0)− z2.
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0
0.5
1.0
1.5
2.0
~
h=1
A =0.5
B =0.48
A
a MI
h-
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0
-0.5
0.0
0.5
1.0
~
A
ha/2+hb/2=0.7
A =0.5
B =0.449
b SF
h-
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0
-0.5
0.0
0.5
1.0
~ h=0.3
A =0.5
B =-0.5
A
c CDW
h- -2.0 -1.5 -1.0 -0.5 0.0 0.5
-2.0
-1.5
-1.0
-0.5
0.0
h=-1
A =-0.482
B =-0.5
A
d MI
~
h-
Figure 4. Spectral density of A-sublattice for different phases. T = 0.05, δ= 0.8. All energy quantities are
measured in units of J (0). ρ̃A = ρA/ħ is the spectral density as function of energy ħω.
Figure 4 illustrates spectral density for all phases. For CDW region of normal phase [figure 4 (c)],
the chemical potential is located within the gap between the bands ρα(ω); the sign of ρα(ω) function is
different in each band [ρα(ω) < 0 at ħω< µ and ρα(ω) > 0 at ħω> µ]. For MI region [figures 4 (a), 4 (d)]
the chemical potential is at the same side of both bands ρα(ω).
23005-6
Energy spectrum and phase diagrams two-sublattice hard-core boson model
The values of σz
A
and σz
B
averages presented in figures 4 (a)–4 (d) are very close to those at T = 0. We
observe themodulated occupancy nA = 1
2
−σz
A
= 0,nB = 1
2
−σz
B
= 1 in CDW-like case [figure 4 (c)]. Contrary
to this, in MI-like cases, this occupancy is either close to zero or unity depending on the chemical potential
value. The latter two possibilities are illustrated in figure 4 (a) (nA ≈ nB ≈ 0 when µ is positioned below
the energy bands) and figure 4 (d) (nA ≈ nB ≈ 1 when µ is placed above the bands).
4. Excitation spectrum in SF phase
In the case of a phase with BE-condensate (SF phase), when sinϑA , 0, sinϑB , 0,
〈〈S+
A |S
−
A 〉〉q,w =
ħ
2π
〈σz
A〉
P A
q
(ħ2ω2 −E 2
A
)(ħ2ω2 −E 2
B
)−2Mqħ
2ω2 −2Nq EAEB +M2
q
, (4.1)
where
P A
q (ħω) =
[
EA
(
cos
2ϑA +1
)
+2ħωcosϑA
](
ħ
2ω2
−E 2
A
)
−2ħωMq cosϑA + Φ̃
A
q EB , (4.2)
and the following notations are introduced:
Mq =Φq cosϑA cosϑB , Nq =
1
2
Φq
(
1+cos
2ϑA cos
2 ϑB
)
, Φ̃
A
q =Φq cos
2ϑA
(
1+cos
2ϑB
)
(4.3)
(the replacement A⇄B gives an expression for the 〈〈S+
B
|S−
B
〉〉q,w function).
The boson spectrum consists now of four branches
ε(SF)
1,2
(~q) =±
(
Pq +Qq
)1/2
, ε(SF)
3,4
(~q) =±
(
Pq −Qq
)1/2
. (4.4)
Here,
Pq =
1
2
(
E 2
A +E 2
B
)
+Mq , Qq =
[
1
4
(
E 2
A −E 2
B
)2
+2Nq EAEB +Mq
(
E 2
A −E 2
B
)
]1/2
. (4.5)
Energies EA and EB, as well as averages 〈σz
A
〉 and 〈σz
B
〉 are determined now as solutions of equations (2.7)
and (2.13). Regions of existence of SF phase are shown in figures 2, 3. The dispersion curves ε(SF)
1..4
(~q) are
present in figure 1 (b) for certain values of h and δ parameters.
The presence of branches with linear dispersion at small values of q [ε3(~q) and ε4(~q) in the case
presented in figure 1 (b)] is the specific feature of SF phase; their energy goes to zero in the point of
the location of chemical potential. This peculiarity of spectrum is well known from investigations of the
simple hard-core boson model [3]. However, in our case, at εA , εB, the additional gapped branch [ε2(~q)
in figure 1 (b)] appears in the negative energy region.
Similarly to the normal phase case, one can perform calculations of the boson spectral density ρα(ω).
Using decomposition of expression (4.1) into partial fractions, we obtain
ρα(ω)=
2
N
∑
q
〈σz
α〉
4
∑
i=1
Aα
i (~q)δ
(
ω−
εi (~q)
ħ
)
, (4.6)
where
Aα
i (~q) =
Pα
q
(
ħω= εi (~q)
)
4Qqεi (~q)
. (4.7)
It is easy to obtain an expression like (3.5) passing to integration with the ρ0(z) density of states. The
contributions from all four bands are present in the total spectral density.
The plots of the ρA(ω) functions in the case of SF phase are presented in figure 4 (b). For branches
with linear dispersion [ε3,4(~q)], the spectral density changes its sign in the point ħω= 0 (at that point the
chemical potential is located). The change of the spectral density shape at MI → SF transition, when we
observe the appearance of the negative branch of ρα(ω) [figure 4 (b)], corresponds to the results obtained
23005-7
I.V. Stasyuk, O. Vorobyov
in [15, 16] as well as to the ones obtained for generalized hard-core boson model with excited states trans-
fer [17]. Additional branch ε2(~q) that appears in SF phase is characterized by a negative spectral density.
Its intensity (at the chosen values of h and δ parameters) is small. Qualitatively, this shape of the ρα(ω)
function is specific for the Bose-Hubbardmodel [18]. However, contrary to the standard case, where addi-
tional branches separated by gaps exist due to the local energy splitting (caused by the Hubbard repulsion
of bosons), in our two-sublattice model such an effect is a consequence of the energy non-equivalence of
sublattices.
The behaviour of ρA(ω) function is in agreement with the results of numerical calculations performed
in [19] with exact diagonalization technique for one-dimensional (d = 1) chain structures. In [19], the
authors take into account the two-particle interaction between nearest neighbouring sites. This inter-
action forms the effective internal field which is similar to the field δ considered here, and both fields
are responsible for the appearance of CDW-like phase. The shape of spectral densities in various phases,
obtained here, lets one identify the equilibrium states on phase diagrams (diagrams of state) obtained
numerically for d = 1.
5. Conclusions
Within the randomphase approximation, we have calculated the spectral densities of a two-sublattice
model of hard-core bosons and analyzed the features of the boson single-particle spectrum in various
phases. These features are connected with the position of the chemical potential level. It is placed:
• within the gap between two boson bands in the case when normal phase is similar to the charge-
ordered (CDW) phase;
• above (or below) both bands in the case when normal phase is similar to the Mott insulator (MI)
phase;
• within a certain boson band, for SF phase (the phase with BE condensate); the additional boson
bands appear in this case.
We have obtained the equation that describes the transition to the SF phase and have built the
corresponding phase diagrams at various temperatures and at different values of energy difference
δ= 1
2
(εA −εB). The temperature increase leads to the gradual vanishing of the difference between CDW-
like and MI-like modifications of normal phase; there are no border lines separating them. SF-phase re-
gion also decreases with the temperature increase;at the same time, two regions of the SF phase, which
exist at T = 0 and at a fixed value of δ, join together. On the other hand, a similar effect takes place for
fixed temperature at the decrease of δ. At high values of δ, there are two critical points in which the
SF phase disappears at an increase of temperature. When δ decreases, only one central critical point
remains.
At the same time, it should be mentioned that nonzero value of δ is the main reason for the appear-
ance of the CDW-like state in our system. We have not included direct intersite interactions between
particles into consideration. This kind of interaction may induce the phase transition into “true” CDW
phase.
More elaborate study of the boson spectrum reconstruction at the transitions between different re-
gions in phase diagrams and the change of their topology remains an interesting task. It is worthy of
special attention.
23005-8
Energy spectrum and phase diagrams two-sublattice hard-core boson model
References
1. Matsuda H., Tsuneto T., Sup. Prog. Theor. Phys., 1970, 39, 411; doi:10.1143/PTPS.46.411.
2. Fisher M., Weichman P., Grinstein G., Fisher D., Phys. Rev. B, 1989, 40, 546; doi:10.1103/PhysRevB.40.546.
3. Micnas R., Ranninger J., Robaszkiewicz S., Rev. Mod. Phys., 1990, 62, 113; doi:10.1103/RevModPhys.62.113.
4. Czathy G.A., Reppy J.D., Chan M.H.W., Phys. Rev. Lett., 2003 91, 235301; doi:10.1103/PhysRevLett.91.235301.
5. Mahan G.D., Phys. Rev. B, 1976, 14, 780; doi:10.1103/PhysRevB.14.780.
6. Stasyuk I.V., Dulepa I.R., Condens. Matter Phys., 2007, 10, 259; doi:10.5488/CMP.10.2.259.
7. Bloch I., Dalibard J., Zwerger W., Rev. Mod. Phys., 2008, 80, 885; doi:10.1103/RevModPhys.80.885.
8. Aizenman M., Lieb E.H., Seiringer R., Solovej J.P., Yugvason I., Phys. Rev. A, 2004, 70, 023612;
doi:10.1103/PhysRevA.70.023612.
9. Puska M.J., Niemenen R.M., Surf. Sci., 1985, 157, No. 2–3, 413; doi:10.1016/0039-6028(85)90683-1.
10. Brenig W., Surf. Sci., 1993, 291, No. 1–2, 207; doi:10.1016/0039-6028(93)91492-8.
11. Iskin M., Eur. Phys. J. B, 2012, 85, 76; doi:10.1140/epjb/e2012-20852-5.
12. Hen I., Iskin M., Rigol M., Phys. Rev. B, 2010, 81, 064503; doi:10.1103/PhysRevB.81.064503.
13. Pich C., Frey E., Phys. Rev. B, 1998, 57, 13712; doi:10.1103/PhysRevB.57.13712.
14. Stasyuk I.V., Dulepa I.R., J. Phys. Studies, 2009, 13, 2701.
15. Ohashi Y., Kitaura M., Matsumoto H., Phys. Rev. A, 2006, 73, 033617; doi:10.1103/PhysRevA.73.033617.
16. Menotti C., Trivedi N., Phys. Rev. B, 2008, 77, 235120; doi:10.1103/PhysRevB.77.235120.
17. Stasyuk I.V., Velychko O.V., Theor. Math. Phys., 2011, 168, 1347; doi:10.1007/s11232-011-0110-2.
18. Dupuis N., Sengupta K., Physica B, 2009, 404, 517; doi:10.1016/j.physb.2008.11.084.
19. Stasyuk I.V., Vorobyov O., Stetsiv R.Ya., Ferroelectrics, 2012, 426, 6; doi:10.1080/00150193.2012.671087.
Енергетичний спектр i фазовi дiаграми двопiдґраткової
моделi жорстких бозонiв
I.В. Стасюк, О. Воробйов
Iнститут фiзики конденсованих систем НАН України,
вул. Свєнцiцького, 1, 79011 Львiв, Україна
Для двопiдґраткової моделi жорстких бозонiв в рамках наближення хаотичних фаз розраховано енерге-
тичний спектр i спектральнi густини у рiзних фазах та побудовано фазовi дiаграми. Дослiджено перебудо-
ву бозонного спектру при змiнi температури, хiмiчного потенцiалу та рiзницi енергiй локальних позицiй
у пiдґратках. Побудовано фазовi дiаграми, якi iлюструють областi iснування нормальної фази, що може
бути подiбною до фази моттiвського дiелектрика (MI) чи зарядового впорядкування (CDW), а також фази
з бозе-конденсатом (фази SF).
Ключовi слова: жорсткi бозони, густина станiв, фазовi дiаграми
23005-9
http://dx.doi.org/10.1143/PTPS.46.411
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/RevModPhys.62.113
http://dx.doi.org/10.1103/PhysRevLett.91.235301
http://dx.doi.org/10.1103/PhysRevB.14.780
http://dx.doi.org/10.5488/CMP.10.2.259
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevA.70.023612
http://dx.doi.org/10.1016/0039-6028(85)90683-1
http://dx.doi.org/10.1016/0039-6028(93)91492-8
http://dx.doi.org/10.1140/epjb/e2012-20852-5
http://dx.doi.org/10.1103/PhysRevB.81.064503
http://dx.doi.org/10.1103/PhysRevB.57.13712
http://dx.doi.org/10.1103/PhysRevA.73.033617
http://dx.doi.org/10.1103/PhysRevB.77.235120
http://dx.doi.org/10.1007/s11232-011-0110-2
http://dx.doi.org/10.1016/j.physb.2008.11.084
http://dx.doi.org/10.1080/00150193.2012.671087
Introduction
Boson Green's functions and phase diagrams
Boson spectrum in normal phase and phase diagrams
Excitation spectrum in SF phase
Conclusions
|