Mathematical model of a stock market

In this paper we construct a mathematical model of securities market. The results obtained are a good basis for an analysis of any stock market.

Gespeichert in:
Bibliographische Detailangaben
Datum:2000
1. Verfasser: Gonchar, N.S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2000
Schriftenreihe:Condensed Matter Physics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/121008
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Mathematical model of a stock market / N.S. Gonchar // Condensed Matter Physics. — 2000. — Т. 3, № 3(23). — С. 461-496. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-121008
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1210082025-02-10T00:14:28Z Mathematical model of a stock market Математична модель фондового ринку Gonchar, N.S. In this paper we construct a mathematical model of securities market. The results obtained are a good basis for an analysis of any stock market. В роботі побудовано математичну модель ринку цінних паперів. Отримані результати є доброю основою для аналізу подій на фондовому ринку. 2000 Article Mathematical model of a stock market / N.S. Gonchar // Condensed Matter Physics. — 2000. — Т. 3, № 3(23). — С. 461-496. — Бібліогр.: 2 назв. — англ. 1607-324X DOI:10.5488/CMP.3.3.461 PACS: 02.50.+s, 05.40.+j https://nasplib.isofts.kiev.ua/handle/123456789/121008 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we construct a mathematical model of securities market. The results obtained are a good basis for an analysis of any stock market.
format Article
author Gonchar, N.S.
spellingShingle Gonchar, N.S.
Mathematical model of a stock market
Condensed Matter Physics
author_facet Gonchar, N.S.
author_sort Gonchar, N.S.
title Mathematical model of a stock market
title_short Mathematical model of a stock market
title_full Mathematical model of a stock market
title_fullStr Mathematical model of a stock market
title_full_unstemmed Mathematical model of a stock market
title_sort mathematical model of a stock market
publisher Інститут фізики конденсованих систем НАН України
publishDate 2000
url https://nasplib.isofts.kiev.ua/handle/123456789/121008
citation_txt Mathematical model of a stock market / N.S. Gonchar // Condensed Matter Physics. — 2000. — Т. 3, № 3(23). — С. 461-496. — Бібліогр.: 2 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT goncharns mathematicalmodelofastockmarket
AT goncharns matematičnamodelʹfondovogorinku
first_indexed 2025-12-02T02:17:06Z
last_indexed 2025-12-02T02:17:06Z
_version_ 1850361077395619840
fulltext Condensed Matter Physics, 2000, Vol. 3, No. 3(23), pp. 461–496 Mathematical model of a stock market N.S.Gonchar Bogolubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., 252143 Kyiv, Ukraine Received May 30, 2000 In this paper we construct a mathematical model of securities market. The results obtained are a good basis for an analysis of any stock market. Key words: random process, effective stock market, option pricing PACS: 02.50.+s, 05.40.+j Dedicated to prominent scientist Igor Yukhnovsky, initiator of my perspective research on economy. 1. Introduction The aim of this paper is to propose a wide class of random processes to describe the evolution of a risk active price and to construct a mathematical theory of option pricing. For this purpose, a general mathematical model of evolution of a risk active price is proposed on a probability space constructed. On the probability space, an evolution of a risk active price is described by a random process with jumps that can have both finite and infinite number of jumps. We introduce a new notion of non-singular martingale and prove an integral representation for a wide class of local martingale by a path integral. This theorem is the basic result of the paper that permits us to introduce the important notion of an effective stock market. For an effective stock market the mathematical theory of European type options is constructed. As a result, the new formulas for option pricing, the capital investor and self-financing strategy corresponding to the minimal hedge are obtained. 2. Some auxiliary results Hereafter we will use two elementary lemmas the proof of which is omitted. Lemma 1. For any on the right continuous functions ϕ(x) and ψ(x), that have the c© N.S.Gonchar 461 N.S.Gonchar bounded variation on [a, b), the following formula ϕ(d)ψ(d)− ϕ(c)ψ(c) = ∫ (c,d] ϕ−(y)dψ(y) + ∫ (c,d] ψ(y)dϕ(y), (c, d] ⊂ [a, b) (1) is valid, F−(u) = lim v↑u F (v). By dϕ(y) and dψ(y) we denoted the charges, generated by functions ϕ(y) and ψ(y) correspondingly, ϕ−(x) = lim y↑x ϕ(y). Lemma 2. The Radon-Nicodym derivative of the measure dg(y), generated by the function g(y) = (1 − F (y))−1, with respect to the measure dF (y), where F (y) is on the right continuous and monotonouosly non-decreasing on [a, b) function and such that F (a) = 0, F (x) < 1, x ∈ [a, b), lim x→b F (x) = 1 is given by the formula dg(y) dF (y) = 1 (1− F (y))(1− F−(y)) . Lemma 3. For on the right continuous and monotoneously non-decreasing function α(x) such that α(x) <∞, x ∈ [a, b), α(a) = 0, lim x→b α(x) = ∞, the representation α(x) = ∫ [a,x] dF (y) 1− F−(y) (2) is valid for a certain F (x), that is on the right continuous and monotonously non- decreasing function, satisfying conditions: F (x) < 1, x ∈ [a, b), lim x→b F (x) = 1, F (a) = 0, if and only if there exists a positive, on the right continuous and monotoneously non-decreasing solution of equation φ(x) = ∫ [a,x] φ(y)dα(y) + 1 (3) such that φ(a) = 0, φ(x) <∞, x ∈ [a, b). The function F (x) is given by the formula F (x) = φ(x)− 1 φ(x) . (4) Proof. The necessity. By definition we put F−(y) = lim x↑y F (x). If the representation (2) holds, then the following equality ∫ [a,x] dα(y) 1− F (y) = ∫ [a,x] dF (y) (1− F (y))(1− F−(y)) = 1 1− F (x) − 1 462 Mathematical model of a stock market is valid. Therefore, the function φ(x) = 1 1− F (x) is a positive, on the right continuous and monotonously non-decreasing solution of equation (3). The sufficiency. If there exists a solution to (3), satisfying conditions of lemma 3, then the function (4) satisfies equation ∫ [a,x] dα(y) 1− F (y) + 1 = 1 1− F (x) . But ∫ [a,x] dF (y) (1− F (y))(1− F−(y)) + 1 = 1 1− F (x) . The latter means that dα(y) 1− F (y) = dF (y) (1− F (y))(1− F−(y)) , or dα(y) = dF (y) (1− F−(y)) . From the latter equality it follows that α(x) = ∫ [a,x] dF (y) (1− F−(y)) . Lemma 3 is proved. Let us give the necessary and sufficient conditions for the existence of a solution to equation (3) Lemma 4. Nonnegative solution to the equation (3) exists if and only if the series φ(x) = 1 + ∞ ∑ n=1 ∫ [a,x] dα(t1) ∫ [a,t1] dα(t2) . . . ∫ [a,tn−1] dα(tn) (5) converges for all x ∈ [a, b). Proof. The necessity. If there exists a non-negative solution to (3), then this solution is the solution to the equation φ(x) = 1 + k ∑ n=1 ∫ [a,x] dα(t1) ∫ [a,t1] dα(t2) . . . ∫ [a,tn−1] dα(tn) 463 N.S.Gonchar + ∫ [a,x] dα(t1) ∫ [a,t1] dα(t2) . . . ∫ [a,tk−1] dα(tk) ∫ [a,tk ] φ(tk+1)dα(tk+1). From the latter equality there follows the inequality 1 + k ∑ n=1 ∫ [a,x] dα(t1) ∫ [a,t1] dα(t2) . . . ∫ [a,tn−1] dα(tn) 6 φ(x). Arbitrariness of k, positiveness of every term of the series means the convergence of (5). The proof of sufficiency follows from the fact that if the series (5) converges then this series is evidently a solution to the equation (3). The lemma 4 is proved. Corollary 1. If α(x) is a continuous and monotonously non-decreasing function, α(x) < ∞, x ∈ [a, b), lim x→b α(x) = ∞, α(a) = 0, then the equation (3) has the solution φ(x) = eα(x). Corollary 2. If γ(x) is some measurable function on [a, b), which satisfies the in- equality ∫ [a,x] γ(y)dα(y) + 1 6 γ(x), x ∈ [a, b), then there exists a solution to equation (3). Lemma 5. The solution to the equation (3) exists if jumps of monotonously non- decreasing and on the right continuous function α(x) is such that ∆α(s) 6= 1. It has the following form φ(x) = eα(x) ∏ {s6x} e−∆α(s) (1−∆α(s)) . If 0 6 ∆α(s) < 1, s ∈ [a, b), then this solution is non-negative, on the right contin- uous and monotonously non-decreasing function, ∆α(s) = α(s)− α−(s). Proof. First of all the product ∏ {s6x} e−∆α(s) (1−∆α(s)) converges, because the estimate ∑ {s6x} ∆α(s) 6 α(x) < ∞, x < b is valid. Let us verify that φ(x) is a solution to (3) in the case when all jump points of α(x) are isolated points. It is sufficient to prove that if φ(x) is the solution to (3) on a certain interval [a, x0] and we prove that φ(x) is the solution to (3) on the interval (x0, x], x > x0 then it will mean that φ(x) is the solution to (3) on the interval [a, x]. We assume that the points xi, i = 1, 2, . . . are the jump points of the function α(x). To verify that φ(x) is the solution to the equation (3) let us assume that we 464 Mathematical model of a stock market have already proved that on the interval [a, xi), where xi is the jump point of the function α(x), φ(x) is the solution to equation (3), that is, ∫ [a,xi) φ(y)dα(y) = φ−(xi)− 1 = eα−(x) ∏ {s<xi} e−∆α(s) (1−∆α(s)) − 1. Let x be any point that satisfies the condition xi < x < xi+1. Since 1 + ∫ [a,x] φ(y)dα(y) = 1 + ∫ [a,xi) φ(y)dα(y) + ∫ [xi] φ(y)dα(y) + ∫ (xi,x] φ(y)dα(y) = φ−(xi)− 1 + eα(xi)∆α(xi) ∏ {s6xi} e−∆α(s) (1−∆α(s)) +[eα(x) − eα(xi)] ∏ {s6xi} e−∆α(s) (1−∆α(s)) + 1 = eα(x) ∏ {s6x} e−∆α(s) (1−∆α(s)) = φ(x). To complete the proof of the lemma it is necessary to note that on the interval [a, x1) the solution to (3) is the function eα(x). Let us prove lemma 5 in a general case. If α(x) satisfies the conditions to lemma 5, then α(x) = αc(x) + ∑ {s6x} ∆α(s), where αc(x) is a continuous function on [a, b). Let us introduce the notation φm(x) = eαm(x) ∏ {s6x} e−∆αm(s) (1−∆αm(s)) , where αm(x) = αc(x) + ∑ {s6x, ∆α(s)>m−1} ∆α(s). In the latter sum the summation comes over all jumps of α(x), where the jumps of α(x) are greater than m−1. It is evident that on any interval [a, x] the set of such points is finite. Therefore φm(x) satisfies the equation φm(x) = ∫ [a,x] φm(y)dαm(y) + 1. (6) Let d < b, then sup x∈[a,d] |φ(x)− φm(x)| 6 sup x∈[a,d] eαc(x) × 1 ∏ {s6d, ∆α(s)>m−1} (1−∆α(s))      1− ∏ {s6d, ∆α(s)>m−1} (1−∆α(s)) ∏ {s6d} (1−∆α(s))      6 465 N.S.Gonchar 6 sup x∈[a,d] eαc(x) ∑ {s6d, ∆α(s)<m−1} ∆α(s) ∏ {s6d} (1−∆α(s)) → 0, m→ ∞. Moreover, var x∈[a,d] [α(x)− αm(x)] 6 ∑ {s6d, ∆α(s)<m−1} ∆α(s) → 0, m→ ∞, where varx∈[a,d] g(x) means a full variation of the function g(x). From these inequal- ities we have ∫ [a,x] [φm(y)− φ(y)]dαm(y) 6 sup x∈[a,d] |φm(x)− φ(x)| var x∈[a,d] α(x) → 0, m→ ∞, ∫ [a,x] φ(y)d[αm(y)− α(y)] 6 sup x∈[a,d] |φ(x)|| var x∈[a,d] [αm(y)− α(y)]| → 0, m→ ∞. From the equality φm(x) = ∫ [a,x] [φm(y)− φ(y)]dαm(y) + ∫ [a,x] φ(y)d[αm(y)− α(y)] + ∫ [a,x] φ(y)dα(y) + 1 and from the preceding inequalities there follows the proof of the lemma 5. Theorem 1. Let ψ(y) be an on the right continuous function of bounded variation on any interval [a, x], x ∈ [a, b), f(y) be a measurable mapping with respect to the Borel σ-algebra on [a, b) and bounded function on [a, x], x ∈ [a, b). If, moreover, α(x) = ∫ [a,x] dψ(y) ψ(y)− f(y) <∞, x ∈ [a, b) (7) is monotonously non-decreasing and on the right continuous function on [a, b) and such that 1) 0 6 ∆α(x) < 1, ∆α(x) = α(x)− α−(x), x ∈ [a, b), 2) lim x→b α(x) = ∞, α(a) = 0, 3) lim x→b ψ(x)e−α(x) = 0, 4) b ∫ a |f(x)|e−α−(x)dα(x) <∞, then for the function ψ(x) the following representation ψ(x) = 1 (1− F (x)) ∫ (x,b) f(x)dF (x) is valid for a certain monotonously non-decreasing and on the right continuous func- tion F (x), such that F (a) = 0, F (x) < 1, x ∈ [a, b), lim x→b F (x) = 1. 466 Mathematical model of a stock market Proof. Let F (x) be the function, which is constructed in the lemma 3. Let us consider the product [1− F (x)]ψ(x). Then for x < d < b −[1 − F (x)]ψ(x) + [1− F (d)]ψ(d) = ∫ (x,d] [1− F−(y)]dψ(y)− ∫ (x,d] ψ(y)dF (y). From the lemma 3 dψ(y) = [ψ(y)− f(y)] dF (y) (1− F−(y)) . Therefore, −[1− F (x)]ψ(x) + [1− F (d)]ψ(d) = − ∫ (x,d] f(y)dF (y). (8) Since [1− F (d)]ψ(d) 6 e−α(d)ψ(d) → 0, d→ b, ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∫ (x,d] f(y)dF (y) ∣ ∣ ∣ ∣ ∣ ∣ ∣ 6 ∫ (x,d] |f(y)|dF (y) = = ∫ (x,d] |f(y)|[1− F−(y)]dα(y) 6 ∫ (x,b) |f(y)|e−α−(y)dα(y) <∞, then, taking the limit in the equality (8), we obtain [1− F (x)]ψ(x) = ∫ (x,b) f(y)dF (y). The theorem is proved. Theorem 2. Let g(u) be a measurable function with respect to B([a, b)) and such that ∫ [a,b) |g(y)|dF (y) <∞, then the following formula 1 (1− F (d)) ∫ (d,b) g(y)dF (y)− 1 (1− F (c)) ∫ (c,b) g(y)dF (y) = = ∫ (c,d]    1 (1− F (u)) ∫ (u,b) g(y)dF (y)− g(u)    dF (u) 1− F−(u) , (c, d] ⊂ [a, b) (9) is valid. 467 N.S.Gonchar Proof. If we choose ϕ(x) = (1− F (x))−1, ψ(x) = ∫ (x,b) g(u)dF (u) and use lemmas 1 and 2 we obtain the proof of the theorem 2. 3. Probability space Hereafter we construct a probability space, in which the securities market evo- lution will be considered. Let α = {aαi } k(α)+1 i=1 be a sequence from [a, b) ⊆ R1 +, a < b, that satisfies conditions: aαi < aαi+1, i = 1, k(α), k(α) ⋃ i=1 [aαi , a α i+1) = [a, b), aα1 = a, aαk(α)+1 = b. Therefore, the set of intervals {[aαi , a α i+1), i = 1, k(α)} forms a decomposition of interval [a, b) ⊆ R1 +. The number k(α) may be both finite and infinite. Further on, we consider the family of probability spaces Ωi = [a, b), i = 1, k(α). On every probability space Ωi a σ-algebra of events F 0 i is given. By definition the σ-algebra F 0 i is the set of subsets of Ωi = [a, b), that is generated by intervals (c, d) ⊂ [aαi , a α i+1). Let us determine the flow of the σ-algebras F 0,t i , t ∈ [a, b), F0,t i ⊆ F0 i , by the formula F0,t i =      {∅, [a, b)}, a 6 t 6 aαi , B([aαi , t]), aαi < t < aαi+1, ∨ t∈[aα i ,aα i+1) B([aαi , t]) = F0 i , aαi+1 6 t 6 b, where we denoted by B([aαi , t]) the σ-algebra of subsets of [a, b) generated by the subsets of (c, d) ⊂ [aαi , t] and ∨ t∈[aα i ,aα i+1) B([aαi , t]) denotes the σ-algebra, that is the union of the σ-algebras B([aαi , t]). Let {Ωα,F 0 α} be the direct product of measurable spaces {Ωi,F 0 i }, i = 1, k(α), and F0,α t = k(α) ∏ i=1 F0,t i be the flow of the σ-algebras on the measurable space {Ωα,F 0 α}, that is the direct product of the σ-algebras F 0,t i , where Ωα = k(α) ∏ i=1 Ωi,F 0 α = k(α) ∏ i=1 F0 i . Let us determine a certain measurable space {Ω,F0}. Denote by X a set of sequences α = {aαi } k(α)+1 i=1 from [a, b) that generate decomposition of [a, b). Let Ω = ∑ α∈X Ω̄α be the direct sum of the probability spaces Ω̄α = {α,Ωα}. Elements of Ω̄α are the pairs {α, ωα}, where ωα ∈ Ωα Let us denote by F̄0 α the σ-algebra of events of the kind Āα = {α,Aα}, where Aα ∈ F0 α, {α,Aα} = = {{α, ωα}, ωα ∈ Aα}. Analogously, F̄ 0,α t is the flow of the σ-algebras from Ω̄α of the sets of the kind {α,Aα}, where Aα ∈ F0,α t . It is evident that Ω̄α∩ Ω̄β = ∅, α 6= β. 468 Mathematical model of a stock market Let Σ be the σ-algebra of all subsets of X. Introduce a σ-algebra F 0 and the flow of the σ-algebras F 0 t in Ω. We assume that the σ-algebra F 0 in Ω is the set of the subsets of the kind CY = ⋃ α∈Y Bα, Y ∈ Σ, Bα ∈ F̄0 α. This follows from the following inclusions ∞ ⋃ i=1 CYi = ⋃ α∈ ∞⋃ i=1 Yi Bα ∈ F0, ∞ ⋂ i=1 CYi = ⋃ α∈ ∞⋂ i=1 Yi Bα ∈ F0, CY1\CY2 = ⋃ α∈Y1\Y2 Bα ∈ F0. By analogy with the construction of the σ-algebra F 0, the flow of the σ-algebra F0 t ⊆ F0 is the set of the subsets of the type CY = ⋃ α∈Y Bα, Y ∈ Σ, Bα ∈ F̄0,α t . Further on we deal with the measurable space {Ω,F 0} and the flow of the σ- algebras F 0 t ⊆ F0 on it. Hereafter we construct the probability space {Ω,F 0, P}. Define a probability measure Pα on the measurable space {Ωα,F 0 α}. For this purpose on every measurable space {Ωi,F 0 i } we determine the family of distribution functions F α i (ω α i |{ωα}i−1), that at every fixed {ωα}i−1 ∈ Ωi−1 = i−1 ∏ s=1 Ωs is on the right continuous and non-decreasing function of the variable ωα i ∈ [a, b), F α i (ω α i |{ωα}i−1) =    0, a 6 ωα i 6 aαi , {ωα}i−1 ∈ Ωi−1, φα i (ω α i |{ωα}i−1), aαi < ωα i < aαi+1 , {ωα}i−1 ∈ Ωi−1, 1, aαi+1 6 ωα i < b, {ωα}i−1 ∈ Ωi−1, where {ωα}i−1 = {ωα 1 , . . . , ω α i−1}, ωα = {ωα 1 , . . . , ω α k(α)}. The function φα i (ω α i |{ωα}i−1) satisfies the conditions: 0 6 φα i (ω α i |{ωα}i−1) < 1, it is on the right continuous and non-decreasing function of the variable ωα i on [aαi , a α i+1) at every fixed {ωα}i−1 ∈ Ωi−1, moreover, it is a measurable function from the measurable space {Ωi−1, F̄0 i−1} to the measurable space {[0, 1],B([0, 1])} at every fixed ωα i , where B([0, 1]) is the Borel σ-algebra on [0, 1], F̄0 i−1 = i−1 ∏ s=1 F0 s . Denote by F α i (dω α i |{ωα}i−1) the measure constructed by the distribution function F α i (ω α i |{ωα}i−1) on the σ-algebra F 0 i at every fixed {ωα}i−1 ∈ Ωi−1. It is evident that F α i (dω α i |{ωα}i−1) is concentrated on the subset [aαi , a α i+1) ⊂ Ωi . Let us determine a measure on the probability space {Ωα,F 0 α}, having determined it on the set of the type A1 × . . .× Ak(α), Ai ∈ F0 i by the formula Pα(A1 × . . .× Ak(α)) = = ∫ A1 . . . ∫ Ak(α) F α 1 (dω α 1 )F α 2 (dω α 2 |{ωα}1)× . . .× F α k(α)(dω α k(α)|{ωα}k(α)−1). 469 N.S.Gonchar The function of the sets so defined can be extended to a certain measure Pα on F0 α due to Ionescu and Tulcha theorem [1]. We put by definition that on the σ-algebra F̄0 α the probability measure P̄α is given by the formula P̄α(Āα) = Pα(Aα). Further on we consider both the probability spaces {Ωα,F 0 α, Pα} and the probability spaces {Ω̄α, F̄ 0 α, P̄α}, that are isomorphic, and the flows of the σ-algebras F 0,α t ⊆ F0 α and F̄0,α t ⊆ F̄0 α on the spaces Ωα and Ω̄α correspondingly. If µ(Y ) is a probability measure on Σ, we put that on the σ-algebra F 0 the probability measure P is given by the formula P (CY ) = ∫ Y P̄α(Bα)dµ(α), CY = ⋃ α∈Y Bα, Y ∈ Σ, Bα ∈ F̄0 α. The latter integral exists, because P̄α(Bα) is a measurable mapping from the mea- surable space {X,Σ} to the measurable space {R1,B(R1)}, where B(R1) is the Borel σ-algebra on R1. Further on we consider the probability space {Ω,F 0, P} and the flow of the σ-algebras F 0 t ⊆ F0 on it, the probability space {Ω,F , P} and the flow of the σ- algebras Ft ⊆ F , where F and Ft are the completion of F 0 and F0 t correspondingly with respect to the measure P. Then we use the same notation P for the extension of a measure P from the σ-algebra F 0 onto the σ-algebra F , where the σ-algebra F is the completion of the σ-algebra F 0 by the sets of zero measure with respect to the measure P given on the σ-algebra F 0. 4. Random processes on the probability space Definition 1. A consistent with the flow of the σ-algebras F 0 t measurable mapping ζt({α, ωα}) from the measurable space {Ω,F0} to the measurable space {R1,B(R1)} belongs to a certain class K if for ζt({α, ωα}) the representation ζt({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ζ i,αt ({ωα}i), ζ i,α t ({ωα}i) = fα i ({ωα}i)χ[aα i , t](ω α i ) + ψα i ({ωα}i−1, t)χ(t, aα i+1) (ωα i ), t ∈ [aαi , a α i+1) (10) is valid, where fα i ({ωα}i) is a measurable mapping from the measurable space {Ωi, F̄0 i } to the measurable space {R1,B(R1)} at every fixed α ∈ X0, i = 1, k(α), ψα i ({ωα}i−1, t) is a measurable mapping from the measurable space {Ωi−1, F̄0 i−1} to the measurable space {R1,B(R1)} at every fixed t ∈ [aαi , a α i+1), α ∈ X0, i = 2, k(α). Further we deal with the space X0 that consists of sequences α = {aαi } k(α)+1 i=1 not having limiting points on the interval [a, x], ∀x < b, Σ is the σ-algebra of all subsets of X0. Hereinafter χD(t) denotes the indicator function of the set D from [a, b). 470 Mathematical model of a stock market Definition 2. By K0 we denote the subclass of the class K of measurable mappings, satisfying conditions: 1) ψα i ({ωα}i−1, t) is an on the right continuous function of bounded variation of the variable t on any interval [aαi , τ ], τ ∈ [aαi , a α i+1) at every fixed {ωα}i−1 ∈ Ωi−1, i = = 1, k(α). 2) fα i ({ωα}i) is a measurable and bounded mapping from the measurable space {Ωi, F̄0 i } to the measurable space {R1,B(R1)}. 3) The function γi,α({ωα}i−1, t) = ∫ [aα i , t] ψα i ({ωα}i−1, dτ) [ψα i ({ωα}i−1, τ)− fα i ({ωα}i−1, τ)] , i = 1, k(α), (11) where fα i ({ωα}i−1, τ) = fα i ({ωα}i)|ω α i = τ, is monotonously non-decreasing and on the right continuous function of the variable t on the interval [aαi , a α i+1) at every fixed {ωα}i−1 ∈ Ωi−1, α ∈ X0, satisfying conditions: a) ∆γi,α({ωα}i−1, t) < 1, {ωα}i−1 ∈ Ωi−1, t ∈ [aαi , a α i+1), ∆γi,α({ωα}i−1, t) = γi,α({ωα}i−1, t)− γi,α({ωα}i−1, t−), γi,α({ωα}i−1, t−) = lim s↑t γi,α({ωα}i−1, s). b) lim t→aα i+1 γi,α({ωα}i−1, t) = ∞, γi,α({ωα}i−1, a α i ) = 0, {ωα}i−1 ∈ Ωi−1, α ∈ X0. c) lim t→aα i+1 ψα i ({ωα}i−1, t) exp {−γ i,α({ωα}i−1, t)} = 0, d) ∫ [aα i , aα i+1) |fα i ({ωα}i−1, t)| exp {−γ i,α({ωα}i−1, t−)}γ i,α({ωα}i−1, dt) <∞, {ωα}i−1 ∈ Ωi−1, α ∈ X0. We denoted by γi,α({ωα}i−1, dt) the measure on B([aαi , a α i+1)), generated by the monotonously non-decreasing and on the right continuous function γi,α({ωα}i−1, t) of the variable t at every fixed {ωα}i−1 ∈ Ωi−1, B([aαi , a α i+1)) is the Borel σ-algebra on the interval [aαi , a α i+1). Lemma 6. Any on the right continuous and uniformly integrable martingale on the probability space {Ω,F , P} with respect to the flow Ft is given by the formula Mt({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)mi,α t ({ωα}i), (12) where m i,α t ({ωα}i) = fα i ({ωα}i)χ[aα i , t](ω α i ) + ψα i ({ωα}i−1, t)χ(t, aα i+1) (ωα i ), fα i ({ωα}i) = ∫ Ωi+1 . . . ∫ Ωk(α) gα({ωα}i, {ωα}[i+1,k(α)]) × F α i+1(dω α i+1|{ωα}i)× . . .× F α k(α)(dω α k(α)|{ωα}k(α)−1), ψα i ({ωα}i−1, t) = 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1), i = 1, k(α), α ∈ X0, (13) 471 N.S.Gonchar gα({ωα}i, {ωα}[i+1,k(α)]) is a measurable and integrable function on the probability space {Ω,F , P}, that is, ∫ X0 Mα|g({α, ωα})|dµ(α) <∞. Proof. Further on, for the mapping gα({ωα}i, {ωα}[i+1,k(α)]) we use one more nota- tion g({α, ωα})=g α({ωα}i, {ωα}[i+1,k(α)]), where {ωα}i={ωα 1 , . . . , ω α i }, {ωα}[i,k(α)] = {ωα i+1, . . . , ω α k(α)}, ωα = {ωα 1 , . . . , ω α k(α)} = {{ωα}i, {ωα}[i,k(α)]}. Taking into account the σ-algebra Σ from X0 consists of all subsets of X 0 to prove the lemma 6, it is sufficient to calculate the conditional expectation M{g({β, ωβ})|Ft}|β=α =Mα{g({α, ωα})|F̄ 0,α t }, where g({α, ωα}) is a measurable and integrable function on the probability space {Ω,F , P}, Mα{g({α, ωα})|F̄ 0,α t } is the conditional expectation with respect to the flow of the σ-algebras F̄0,α t ⊆ F̄0 α on the probability space {Ω̄α, F̄ 0 α, P̄α}. Suppose that t ∈ [aαi , a α i+1). From this it follows that ϕt i({ωα}) =Mα{g({α, ωα})|F̄ 0,α t } is the measurable mapping from {Ω̄α, F̄ 0,α t , P̄α} to {R1,B(R1)}, where F̄0,α t = i−1 ∏ s=1 F0 s × F0,t i × k(α) ∏ s=i+1 Os, Os = {∅, [a, b)}, s = i+ 1, k(α). Due to the structure of the σ-algebra F̄0,α t it follows that ϕt i({ωα}) depends only on variables {ωα}i and ϕt i({ωα}) is a measurable mapping from {Ωi, i−1 ∏ s=1 F0 s ×F0,t i } to {R1,B(R1)}. Granting this notation we have ϕt i({ωα}) = Qt i({ωα}i) = ϕα i ({ωα}i, t)χ[aα i , t](ω α i ) + ψα i ({ωα}i−1, t)χ(t, aα i+1) (ωα i ). (14) Really, Qt i({ωα}i) = Qt i({ωα}i)χ[aα i , t](ω α i ) +Qt i({ωα}i)χ(t, aα i+1) (ωα i ). Because of the fact that Qt i({ωα}i)χ[aα i ,t](ω α i ) is a measurable mapping from {Ωi, i−1 ∏ s=1 F0 s × F0,t i } to {R1,B(R1)} it follows that Qt i({ωα}i)χ(t,aα i+1) (ωα i ) is also the measurable mapping. But this is possible, when Q t i({ωα}i) does not depend on the variable ωα i ∈ (t, b), because the only measurable sets i−1 ∏ s=1 Bs × Ai belong to the σ-algebra i−1 ∏ s=1 F0 s × F0,t i , when ωα i ∈ (t, b), where Bs ∈ F0 s , Ai = [a, aαi ) ∪ (t, b). Putting Qt i({ωα}i) = ϕα i ({ωα}i, t), {ωα}i ∈ Ωi−1 × [aαi , t], Qt i({ωα}i) = ψα i ({ωα}i−1, t), {ωα}i ∈ Ωi−1 × {[a, aαi ) ∪ (t, b)}, 472 Mathematical model of a stock market we prove the representation (14). Taking into account the definition of the condi- tional expectation we have ∫ B1 . . . ∫ Bi−1 ∫ A Qt i({ωα}i)F α 1 (dω α 1 )× . . .× F α i (dω α i |{ωα}i−1) = = ∫ B1 . . . ∫ Bi−1 ∫ A ∫ Ωi+1 . . . ∫ Ωk(α) g({α, ωα})F α 1 (dω α 1 )× . . .× F α k(α)(dω α k(α)|{ωα}k(α)−1), Bs ∈ Ωs, s = 1, i− 1, A ∈ F0,t i . (15) Let us introduce the measurable mapping fα i ({ωα}i) = ∫ Ωi+1 . . . ∫ Ωk(α) gα({ωα}i, {ωα}[i+1,k(α)]) ×F α i+1(dω α i+1|{ωα}i)× . . .× F α k(α)(dω α k(α)|{ωα}k(α)−1) from the measurable space {Ωi, F̄0 i } to the measurable space {R1,B(R1)}. It is evident that ∫ Ω1 . . . ∫ Ωi |fα i ({ωα}i)|F α 1 (dω α 1 )× . . .× F α i (dω α i |{ωα}i−1) 6Mα|g({α, ωα})| <∞. From this and (15) it follows that ϕα i ({ωα}i, t) = fα i ({ωα}i), ψα i ({ωα}i−1, t) = 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1), i = 1, k(α), α ∈ X0. It is evident that between fα i ({ωα}i) there exists the following relations fα i ({ωα}i) = ∫ Ωi+1 fα i+1({ωα}i+1)F α i+1(dω α i+1|{ωα}i), i = 1, k(α), α ∈ X0. The proof of the lemma 6 is completed. Lemma 7. Let a measurable mapping ζt({α, ωα}) on the measurable space {Ω,F0} belong to the subclass K0, for every fixed α ∈ X0, i = 1, k(α), ψα i ({ωα}i−1, a α i ) = fα i−1({ωα}i−1), {ωα}i−1 ∈ Ωi−1 and there exists a constant A <∞ such that ∫ X0 ψα 1 (a)dµ(α) 6 A 473 N.S.Gonchar for a certain probability measure µ on Σ. If fα i ({ωα}i) > 0, then on the measur- able space {Ω,F0} there exist a measure P on the σ-algebra F0 and a modification ζ̄t({α, ωα}) of the measurable mapping ζt({α, ωα}), such that ζ̄t({α, ωα}) is a local martingale on the probability space {Ω,F , P} with respect to the flow of the σ-algebra Ft, where the σ-algebras F and Ft are the completion of the σ-algebras F0 and F0 t correspondingly with respect to the measure P. Proof. The proof of the lemma 7 follows from the theorem 1. Really, all conditions of the theorem 1 are valid. Therefore, there exists a family of distribution functions F α i (ω α i |{ωα}i−1), i = 1, k(α), α ∈ X0, {ωα}i−1 ∈ Ωi−1, with the properties, described at the introduction of the probability space {Ω,F , P}, that for ψα i ({ωα}i−1, t) the following representation ψα i ({ωα}i−1, t) = 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1), i = 1, k(α), α ∈ X0, is valid. Let us consider the measurable mapping ζ̄t({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ζ̄ i,αt ({ωα}i), ζ̄ i,α t ({ωα}i}) = fα i ({ωα}i)χ[aα i , t](ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ), on the probability space {Ω,F , P} consistent with the flow of the σ-algebras Ft, where the σ-algebras F and Ft are the completion of the σ-algebras F 0 and F0 t correspondingly with respect to the measure P, generated by the family of distribu- tion functions F α i (ω α i |{ωα}i−1), i = 1, k(α), α ∈ X0 and the measure dµ(α). The measurable mapping ζt({α, ωα}) differ from the measurable mapping ζ̄t({α, ωα}) on the set Ω\Ω0, P (Ω\Ω0) = 0. Let us construct the set Ω0. Consider the set Ω0 α = {ωα ∈ Ωα, a α i < ωα i < aαi+1, i = 1, k(α)}, where ωα = {ωα 1 , . . . , ω α k(α)} and show that Pα(Ω 0 α) = 1. Really, since the sequence of the sets Ωn α = {ωα ∈ Ωα, a α i < ωα i < aαi+1, i = 1, n, a 6 ωα i < b, i = n+ 1, k(α)} has the probability 1, that is, Pα(Ω n α) = 1, n = 1, 2, . . . , and taking into account that Ωn α ⊃ Ωn+1 α , Ω0 α = ∞ ⋂ n=1 Ωn α, the continuity of the probability measure Pα, we obtain Pα(Ω 0 α) = 1. As far as there are no more than a countable set of α for which µ(α) > 0, then there exists a countable subset X0 1 ⊆ X0 such that the direct sum of the sets Ω0 α, α ∈ X0 1 forms the set Ω0 ⊂ Ω, P (Ω0) = 1. 474 Mathematical model of a stock market From the condition of the lemma 7 we have the recurrent relations fα i−1({ωα}i−1) = ∫ [aα i , aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1) = ∫ Ωi fα i ({ωα}i)F α i (dω α i |{ωα}i−1), i = 1, k(α), α ∈ X0. As far as ψα 1 (a) = ∫ Ω1 fα 1 ({ωα}1)F α 1 (dω α 1 ) <∞, then we have ψα 1 (a) = ∫ Ω1 . . . ∫ Ωi fα i ({ωα}i)F α 1 (dω α 1 )× . . .× F α i (dω α i |{ωα}i−1). For every t0 ∈ [a, b) let us introduce the measurable mapping from the measurable space {Ω,F} to the measurable space {R1,B(R1)}. gt0({α, ωα}) = fα i(t0,α) ({ωα}i(t0,α)), where i(t0, α) = max{i, aαi 6 t0}. From the condition of lemma 7 Mgt0({α, ωα}) = ∫ X0 ψα 1 (a)dµ(α) <∞. Moreover, it is not difficult to see that ζ̄t∧t0({α, ωα}) =M{gt0({α, ωα})|Ft}. The latter equality means that ζt({α, ωα}) is a local martingale since this equality is valid for any t0 ∈ [a, b). Therefore, we can choose the sequence of stop moments tn0 → b with probability 1 such that ζt∧tn0 ({α, ωα}) → ζt({α, ωα}) with probability 1. The lemma 7 is proved. In a more general case, there holds Lemma 8. Let a measurable mapping ζt({α, ωα}) on the measurable space {Ω,F0} belong to the subclass K0. Suppose that for any t0 ∈ [a, b), ∫ X0 dαi(t0,α)dµ(α) <∞ for a certain probability measure dµ(α) on Σ, where dαi = sup {{ωα}i∈Ωi} |fα i ({ωα}i)|, i(t0, α) = max{i, aαi 6 t0}. If for every fixed i = 1, k(α), α ∈ X0, ψα i ({ωα}i−1, a α i ) = fα i ({ωα}i−1), {ωα}i−1 ∈ Ωi−1, 475 N.S.Gonchar then on the measurable space {Ω,F0} there exist a measure P on the σ-algebra F0 and a modification ζ̄t({α, ωα}) of the measurable mapping ζt({α, ωα}), such that ζ̄t({α, ωα}) is a local martingale on the probability space {Ω,F , P} with respect to the flow of the σ-algebra Ft, where the σ-algebras F and Ft are the completion of the σ-algebras F0 and F0 t correspondingly with respect to the measure P. The proof of the lemma 8 is the same as the proof of the lemma 7. As before, let {Ω,F , P} be the probability space with the flow of the σ-algebras Ft ⊆ F on it. Suppose that ζt({α, ωα}) is a random process consistent with the flow of σ-algebras Ft, where ζt({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ζ i,αt ({ωα}i), ζ i,α t ({ωα}i}) = fα i ({ωα}i)χ[aα i , t](ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ), (16) satisfying the conditions: fα i ({ωα}i) = ∫ Ωi+1 fα i+1({ωα}i+1)F α i+1(dω α i+1|{ωα}i), ∫ X0 ∫ Ω1 . . . ∫ Ωiα |fα iα ({α, ωα}iα)|F α 1 (dω α 1 ) . . . F α iα (dωα iα |{ωα}iα−1)dµ(α) <∞ for every t0 ∈ [a, b), iα = i(t0, α) = max{i, aαi 6 t0}, then ζt({α, ωα}) is a local martingale. This assertion can be proved the same way as lemma 7 was proved. Further on we connect with the local martingale ζt({α, ωα}) on {Ω,F , P} a stochastic process ζat ({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ζ i,αt,a ({ωα}i), which is consistent with the flow of the σ-algebras Ft, where ζ i,α t,a ({ωα}i) = = fα i ({ωα}i−1, t)− 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1). We shall call the process ζ at ({α, ωα}) as the process associated with the ζt({α, ωα}) process. 476 Mathematical model of a stock market Definition 3. Realization of the assotiated process ζat ({α, ωα}) is regular if the set {t ∈ [a, b), ζ i,α t,a ({ωα}i) = 0, i = 1, k(α)} is no more than the countable set. Definition 4. A local martingal ζt({α, ωα}) is non-singular on {Ω,F , P} if the set of regular realizations of the associated random process ζat ({α, ωα}) has got the probability 1. Lemma 9. On the probability space {Ω,F , P} there always exists a non-singular local martingale. Proof. To prove the lemma 9 we construct an example of a martingale on {Ω,F , P} that is non-singular. Let f α s (ω α s ) > 0, s = 1, k(α), α ∈ X0 be the measurable mapping with respect to the σ-algebra F 0 s , satisfying conditions: 0 < ∫ Ωs fα s (ω α s )F α s (dω α s |{ωα}s−1) <∞, s = 1, k(α), α ∈ X0, {ωα}s−1 ∈ Ωs−1, (17) fα s (t)− 1 1− F α s (t|{ωα}s−1) ∫ (t, aα i+1) fα s (ω α s )F α s (dω α s |{ωα}s−1) 6= 0, t ∈ [aαs , a α s+1), s = 1, k(α), α ∈ X0, {ωα}s−1 ∈ Ωs−1. (18) Then the local martingale ξαt ({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξi,αt ({ωα}i) is not singular, where ξ i,α t ({ωα}i}) = gαi ({ωα}i)χ[aα i , t](ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t,aα i+1) (ωα i ), gαi ({ωα}i) = i ∏ s=1 g0,αs ({ωα}s), g0,αs ({ωα}s) = fα s (ω α s ) ∫ Ωs fα s (ω α s )F α s (dω α s |{ωα}s−1) . If, for example, fα s (ω α s ) > 0, s = 1, k(α), α ∈ X0, are strictly monotonous on [aαs , a α s+1), then the conditions (17), (18) are satisfied. The lemma 9 is proved. 477 N.S.Gonchar Theorem 3. For any local martingale ζt({α, ωα}) given by the formula (16) and satisfying conditions sup {ωα}i∈Ωi |fα i ({ωα}i)| = βα i <∞, i = 1, k(α), α ∈ X0, ∫ [aα i , aα i+1) |ϕα i (s|{ωα}i−1)| F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) <∞, {ωα}i−1 ∈ Ωi−1, α ∈ X0, the following representation ζt({α, ωα}) = ∫ Ω1 fα 1 (ω α 1 )F α 1 (dω α 1 ) + ∫ [a,t] ψk(α)(s|ωα)dξs({α, ωα}), t ∈ [a, b) is valid if the local martingale ξt({α, ωα}) is non-singular, sup {ωα}i∈Ωi |gαi ({ωα}i)| = = δαi <∞, i = 1, k(α), α ∈ X0, and ∫ [aα i , aα i+1) |ϕ0,α i (s|{ωα}i−1)| F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) <∞, {ωα}i−1 ∈ Ωi−1, α ∈ X0, where ξt({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξi,αt ({ωα}i), ξ i,α t ({ωα}i}) = gαi ({ωα}i)χ[aα i , t](ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ), ψk(α)(s|ωα) = k(α) ∑ i=1 χ[aα i , aα i+1) (s) ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) , ϕ 0,α i (s|{ωα}i−1) = = gαi ({ωα}i−1, s)− 1 1− F α i (s|{ωα}i−1) ∫ (s, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1), ϕα i (s|{ωα}i−1) = = fα i ({ωα}i−1, s)− 1 1− F α i (s|{ωα}i−1) ∫ (s, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1). 478 Mathematical model of a stock market Proof. Let us consider on the right continuous version of the random processes ξ1t ({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξi,α,1t ({ωα}i), ξ i,α,1 t ({ωα}i) = = 1 1− F α i (ω α i |{ωα}i−1) ∫ (ωα i , aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)χ[aα i , t)(ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ), ξ2t ({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξi,α,2t ({ωα}i), ξ i,α,2 t ({ωα}i) = χ[aα i , t](ω α i ) ×    gαi ({ωα}i)− 1 1− F α i (ω α i |{ωα}i−1) ∫ (ωα i , aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)    . It is obvious that ξt({α, ωα}) = ξ1t ({α, ωα}) + ξ2t ({α, ωα}). All realizations of the random processes ξ it({α, ωα}), i = 1, 2, have got a bounded variation on any interval [a, t], t < b. Denote by dξ it({α, ωα}), i = 1, 2 and dξt({α, ωα}) the charges generated by these realizations on the σ-algebra B([a, b)). To prove the theorem 3, consider those realizations that are continuous at the points {aαi } k(α)+1 i=1 , α ∈ X0. The set of realizations satisfying this condition have got the probability 1. The left and right limits at every point aα i , i = 1, k(α), α ∈ X0 equal lim t↓aα i ξt({α, ωα}) = ξ i,α aα i ({ωα}i) =    ∫ [aα i , aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1), aαi < ωα i < aαi+1, {ωα}i−1 ∈ Ωi−1, gαi ({ωα}i−1, a α i ), ωα i = aαi , {ωα}i−1 ∈ Ωi−1, (19) lim t↑aα i ξt({α, ωα}) = gαi−1({ωα}i−1), {ωα}i−1 ∈ Ωi−1. (20) Consider the set Ω0 α = {ωα ∈ Ωα, a α i < ωα i < aαi+1, i = 1, k(α)}, where ωα = {ωα 1 , . . . , ω α k(α)} and show that Pα(Ω 0 α) = 1. Really, since the sequence of the sets Ωn α = {ωα ∈ Ωα, a α i < ωα i < aαi+1, i = 1, n, a 6 ωα i < b, i = n+ 1, k(α)} 479 N.S.Gonchar has got the probability 1, that is, Pα(Ω n α) = 1, n = 1, 2, . . . , and taking into account that Ωn α ⊃ Ωn+1 α , Ω0 α = ∞ ⋂ n=1 Ωn α, the continuity of the probability measure Pα, we obtain Pα(Ω 0 α) = 1. As far as it is no more than a countable set of α for which µ(α) > 0, then there exists a countable subset X0 1 ⊆ X0 such that the direct sum of the sets Ω0 α, α ∈ X0 1 forms the set Ω0 ⊂ Ω, P (Ω0) = 1. Since gαi−1({ωα}i−1) = ∫ [aα i , aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1) = = ∫ Ωi gαi ({ωα}i)F α i (dω α i |{ωα}i−1), i = 1, k(α), α ∈ X0, then for every {α, ωα} ∈ Ω0 the realization of a random process ξt({α, ωα}) is con- tinuous at the points {aαi } k(α)+1 i=1 . The charge generated by realizations of the random process ξ1t ({α, ωα}) on the interval [aαi , a α i+1) is absolutely continuous with respect to the measure F α i (dt|{ωα}i−1) and the Radon-Nicodym derivative equals dξi,α,1t ({α, ωα}) F α i (dt|{ωα}i−1) = χ[aα i ,ωα i ](t) 1 1− F α i (t−|{ωα}i−1) (21) ×    1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)− gαi ({ωα}i−1, t)    , where 1 1− F α i (t−|{ωα}i−1) = lim τ↑t 1 1− F α i (τ |{ωα}i−1) . The charge dξ2t ({α, ωα}) generated by realizations of the process ξ2t ({α, ωα}) on the interval [aαi , a α i+1) is concentrated at the point t = ωα i dξ2t ({α, ωα}) = dξi,α,2t ({ωα}i) = δ(t− ωα i )ϕ 0,α i (ωα i |{ωα}i−1). (22) Let us calculate ∫ [aα i , t] ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) dξi,αs ({ωα}i) = ∫ [aα i , t] ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) dξi,α,1s ({ωα}i) + ∫ [aα i , t] ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) dξi,α,2s ({ωα}i) = K i,α,1 t ({ωα}i) +K i,α,2 t ({ωα}i). Using (21) and the theorem 2 we have K i,α,1 t ({ωα}i) = − ∫ [aα i , t] χ[aα i ,ωα i ](s)ϕ α i (s|{ωα}i−1) F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) 480 Mathematical model of a stock market = 1 1− F α i (ω α i |{ωα}i−1) ∫ (ωα i , aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1)χ[aα i , t)(ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ) − ∫ (aα i , aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1). Further, K i,α,2 t ({ωα}i) = χ[aα i , t](ω α i ) ×    fα i ({ωα}i)− 1 1− F α i (ω α i |{ωα}i−1) ∫ (ωα i , aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1)    . Therefore, ∫ [aα i , t] ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) dξi,αs ({ωα}i) = = fα i ({ωα}i)χ[aα i , t](ω α i ) +χ(t, aα i+1) (ωα i ) 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1) − ∫ [aα i , aα i+1) fα i ({ωα}i)F α i (dω α i |{ωα}i−1). Taking the limit t→ aαi+1 we obtain ∫ [aα i , aα i+1) ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) dξi,αs ({ωα}i) = = fα i ({ωα}i)− fα i−1({ωα}i−1), i = 1, k(α), where fα 0 ({ωα}0) = ∫ (aα1 , aα2 ) fα 1 ({ωα}1)F α 1 (dω α 1 ) = ∫ Ω1 fα 1 ({ωα}1)F α 1 (dω α 1 ). Granting this and the definition of ψk(α)(s|ωα) we obtain ∫ Ω1 fα 1 (ω α 1 )F α 1 (dω α 1 ) + ∫ [a,t] ψk(α)(s|ωα)dξs({α, ωα}) = ζ i,α t ({ωα}i) = ζt({α, ωα}), t ∈ [aαi , a α i+1). The theorem 3 is proved. 481 N.S.Gonchar Theorem 4. Let ξ0t ({α, ωα}) be a local martingale on {Ω,F , P}, ξ0t ({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξi,αt ({ωα}i), ξ i,α t ({ωα}i}) = gαi ({ωα}i)χ[aα i , t](ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ), satisfying conditions: sup {ωα}i∈Ωi |gαi ({ωα}i)| = βα i <∞, i = 1, k(α), α ∈ X0, ∫ [aα i , aα i+1) |ϕ0,α i (s|{ωα}i−1)| F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) <∞, {ωα}i−1 ∈ Ωi−1, i = 1, k(α), α ∈ X0, where ϕ 0,α i (s|{ωα}i−1) = = gαi ({ωα}i−1, s)− 1 1− F α i (s|{ωα}i−1) ∫ (s, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1). The random process ξt({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)fα(ξ i,α t ({ωα}i)) belongs to the subclass K0 if the family of functions fα(x) > 0, x ∈ R1, α ∈ X0, are strictly monotonous, sup x∈R1 |f ′ α(x)| = fα 1 <∞, inf x∈R1 |f ′ α(x)| = fα 2 > 0, moreover, sup i sup {ωα}i−1∈Ωi−1 sup s∈[aα i ,aα i+1) ∆F α i (s|{ωα}i−1) 1− F α i (s−|{ωα}i−1) < fα 2 fα 1 . Proof. To prove the theorem 4 it is sufficient to verify the fulfillment of the condi- tions of definition 2. The condition 1 is valid, because ψα i ({ωα}i−1, t) = fα(T α i (t|{ωα}i−1)) is continuous on the right, where T α i (t|{ωα}i−1) = 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1). 482 Mathematical model of a stock market Moreover, var t∈[aα i , τ ] ψα i ({ωα}i−1, t) 6 fα 1 ∫ [aα i , τ ] |ϕ0,α i (s|{ωα}i−1)| F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) <∞, τ ∈ [aαi , a α i+1), {ωα}i−1 ∈ Ωi−1, α ∈ X0. The Radon-Nicodym derivative of the charge ψα i ({ωα}i−1, dt), generated by ψα i ({ωα}i−1, t), equals ψα i ({ωα}i−1, dt) F α i (dt|{ωα}i−1) = − f ′ α(T α i (t|{ωα}i−1))ϕ 0,α i (t|{ωα}i−1) 1− F α i (t−|{ωα}i−1) . Thus, γi,α({ωα}i−1, t) = ∫ [aα i , t] ψα i ({ωα}i−1, dτ) ψα i ({ωα}i−1, τ)− fα(g α i ({ωα}i−1, τ)) = ∫ [aα i , t] f ′ α(T α i (τ |{ωα}i−1))F α i (dτ |{ωα}i−1) U({ωα}i−1, τ)[1− F α i (τ−|{ωα}i−1)] is non-negative and monotonously non-decreasing on [aαi , a α i+1), where U({ωα}i−1, τ) = 1 ∫ 0 f ′ α(g α i ({ωα}i−1, τ) + z[T α i (τ |{ωα}i−1)− gαi ({ωα}i−1, τ)])dz. Further, ∆γi,α({ωα}i−1, t) 6 fα 1 fα 2 sup i sup {ωα}i−1∈Ωi−1 sup s∈[aα i ,aα i+1) ∆F α i (s|{ωα}i−1) 1− F α i (s−|{ωα}i−1) < 1. lim t→aα i+1 γi,α({ωα}i−1, t) > fα 2 fα 1 lim t→aα i+1 ∫ [aα i , t] F α i (dτ |{ωα}i−1) 1− F α i (τ−|{ωα}i−1) = ∞, lim t→aα i γi,α({ωα}i−1, t) = 0, {ωα}i−1 ∈ Ωi−1, α ∈ X0. (c) is evident from (b) and boundedness of ψα i ({ωα}i). At last ∫ [aα i ,aα i+1) |fα(g α i ({ωα}i−1, t))| exp{−γ i,α({ωα}i−1, t−)}γ i,α({ωα}i−1, dt) 6 6 e(βα i f α 1 + fα(0)). The theorem 4 is proved. 483 N.S.Gonchar 5. Options and their pricing We assume that {Ω,F , P} is a full probability space, generated by the family of distribution functions F α i (ω α i |{ωα}i−1), i = 1, k(α), α ∈ X0 and a measure dµ(α) on the σ-algebra Σ. Further on we assume that X0 is a space of possible hypothesis each of which may occur with probability µ(α), that is, an evolution of stock price can come by one of the possible scenario. This scenario is determined by sequence α and a probability space {Ωα,F 0 α, Pα}. Theorem 5. Let φ({α, ωα}) = φα({ωα}k(α)) be a random value on the probability space {Ω,F , P}, satisfying conditions: 1) |φα({ωα}k(α))| 6 Cα <∞, α ∈ X0, ∫ X0 Cαdµ(α) <∞; 2) there exists tαi ∈ [aαi , a α i+1) such that |φα({ωα}i−1, s1, {ωα}[i+1,k(α)])− φα({ωα}i−1, s2, {ωα}[i+1,k(α)])| 6 6 Cα i |F α i (s1|{ωα}i−1)− F α i (s2|{ωα}i−1)| εiα, εiα > 0, s1, s2 ∈ [tαi , a α i+1), Cα i <∞, i = 1, k(α), {ωα}i−1 ∈ Ωi−1, {ωα}[i+1,k(α)] ∈ Ωk(α)−i, α ∈ X0. Further, let ξ0t ({α, ωα}) be a local non-singular martingale on {Ω,F , P}, ξ0t ({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξi,αt ({ωα}i), ξ i,α t ({ωα}i}) = gαi ({ωα}i)χ[aα i , t](ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ), satisfying conditions sup {ωα}i∈Ωi |gαi ({ωα}i)| = βα i <∞, i = 1, k(α), α ∈ X0, ∫ [aα i , aα i+1) |ρ0,αi (s|{ωα}i−1)| F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) <∞, {ωα}i−1 ∈ Ωi−1, α ∈ X0, ρ 0,α i (s|{ωα}i−1) = = gαi ({ωα}i−1, s)− 1 1− F α i (s|{ωα}i−1) ∫ (s, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1), If the random process has got the form ξt({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)fα(ξ i,α t ({ωα}i)), 484 Mathematical model of a stock market where a family of functions fα(x) > 0, x ∈ R1, α ∈ ∈ X0, is such that each of the functions fα(x) is strictly fulfillment, sup x∈R1 |f ′ α(x)| = fα 1 <∞, inf x∈R1 |f ′ α(x)| = fα 2 > 0, and sup i sup {ωα}i−1∈Ωi−1 sup s∈[aα i ,aα i+1) ∆F α i (s|{ωα}i−1) 1− F α i (s−|{ωα}i−1) < fα 2 fα 1 , then there exists a measure P1 on {Ω,F0}, generated by a certain family of dis- tribution functions F α,1 i (ωα i |{ωα}i−1), i = 1, k(α), α ∈ X0, a probability measure dµ1(α) on the σ-algebra Σ and a modification ξ̄t({α, ωα}) of the the random process ξt({α, ωα}) such that ξ̄t({α, ωα}) is a local non-singular martingale on the probability space {Ω,F1, P1} with respect to the flow of the σ-algebras F1 t , where the σ-algebras F1 and F1 t are the completion of the σ-algebras F0 and F0 t correspondingly with respect to the measure P1. Moreover, for the regular martingale M1{φ({α, ωα})|F 1 t } on the probability space {Ω,F1, P1} the representation M1{φ({α, ωα})|Ft} =M1 αφ α({ωα}k(α)) + ∫ [a,t] ψk(α)(s|ωα)dξ̄s({α, ωα}), t ∈ [a, b) is valid, where ψk(α)(s|ωα) = k(α) ∑ i=1 χ[aα i , aα i+1) (s) ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) , ϕ 0,α i (s|{ωα}i−1) = = fα(g α i ({ωα}i−1, s))− 1 1− F α,1 i (s|{ωα}i−1) ∫ (s, aα i+1) fα(g α i ({ωα}i))F α,1 i (dωα i |{ωα}i−1), ϕα i (s|{ωα}i−1) = = φα i ({ωα}i−1, s)− 1 1− F α,1 i (s|{ωα}i−1) ∫ (s, aα i+1) φα i ({ωα}i)F α,1 i (dωα i |{ωα}i−1), φα i ({ωα}i) = ∫ Ωi+1 . . . ∫ Ωk(α) φα({ωα}i, {ωα}[i+1,k(α)]) ×F α,1 i+1(dω α i+1|{ωα}i)× . . .× F α,1 k(α)(dω α k(α)|{ωα}k(α)−1). Proof. The conditions of the theorem 5 guarantee the monotonous of the conditions of the theorem 4. Therefore the random process ξt({α, ωα}) belongs to the subclass K0. Moreover, ψα i ({ωα}i−1, a α i ) = fα(ξ i,α aα i ({ωα}i)) = fα    ∫ (aα i , aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)    = 485 N.S.Gonchar = fα(g α i−1({ωα}i−1)) = fα i−1({ωα}i−1) with probability 1 on the probability space {Ω,F , P}, since gαi−1({ωα}i−1) = ∫ (aα i , aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1) with probability 1. Further, ∫ X0 fα(v(α))dµ1(α) <∞, where dµ1(α) = u(α)dµ(α), v(α) = ∫ (aα i , aα i+1) gα1 (ω α 1 )F α 1 (dω α 1 ), u(α) = χA(α) + [fα(v(α))] −1χX0\A(α) D , D = ∫ X0 {χA(α) + [fα(v(α))] −1χX0\A(α)}dµ(α), χA(α) is the characteristic function of the set A = {α, fα(v(α)) 6 1}. Based on the lemma 7 there exists a measure P1 on the σ-algebra F 0, generated by a certain family of distribution functions F α,1 i (ωα i |{ωα}i−1), i = 1, k(α), α ∈ X0 and the measure dµ1(α) on σ-algebra Σ such that the random process ξ̄t({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξ̄i,αt ({ωα}i), ξ̄ i,α t ({ωα}i) = fα(g α i ({ωα}i))χ[aα i , t](ω α i ) + 1 1− F α,1 i (t|{ωα}i−1) ∫ (t, aα i+1) fα(g α i ({ωα}i))F α,1 i (dωα i |{ωα}i−1)χ(t, aα i+1) (ωα i ), i = 1, k(α), α ∈ X0, is a modification of the random process ξt({α, ωα}) on the probability space {Ω,F1, P1}. Since ξ0t ({α, ωα}) is also a local non-singular martingale, then ξ̄t({α, ωα}) is also a local non-singular martingale because {t ∈ [a, b), ξ̄i,αt,a ({ωα}i−1) = 0, i = 1, k(α)} ⊆ ⊆ {t ∈ [a, b), ξi,αt,a ({ωα}i−1) = 0, i = 1, k(α)}, 486 Mathematical model of a stock market due to the strict monotony of fα(x), where ξ̄ i,α t,a ({ωα}i−1) = = fα(g α i ({ωα}i))− 1 1− F α,1 i (t|{ωα}i−1) ∫ (t, aα i+1) fα(g α i ({ωα}i))F α,1 i (dωα i |{ωα}i−1) = fα(g α i ({ωα}i))− fα(T α i (t|{ωα}i−1)), T α i (t|{ωα}i−1) = 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1), ξ i,α t,a ({ωα}i−1) = gαi ({ωα}i)− T α i (t|{ωα}i−1). To finish the proof of the theorem 5 it is sufficient to verify the monotonous of the conditions of the theorem 3. Really, ∫ [aα i , aα i+1) |ϕ0,α i (s|{ωα}i−1)| F α,1 i (ds|{ωα}i−1) 1− F α,1 i (s−|{ωα}i−1) 6 6 [fα 1 ] 2 fα 2 ∫ [aα i , aα i+1) |ρ0,αi (s|{ωα}i−1)| F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) <∞, {ωα}i−1 ∈ Ωi−1, α ∈ X0. ∫ [aα i , aα i+1) |ϕα i (s|{ωα}i−1)| F α,1 i (ds|{ωα}i−1) 1− F α,1 i (s−|{ωα}i−1) 6 6 2Cα ∫ [aα i , tα i ] F α,1 i (ds|{ωα}i−1) 1− F α,1 i (s−|{ωα}i−1) +Cα i ∫ [tα i , aα i+1) (1− F α i (s|{ωα}i−1)) εiα F α,1 i (ds|{ωα}i−1) 1− F α,1 i (s−|{ωα}i−1) <∞, because the first integral is finite and the second integral is finite since γi,α({ωα}i−1, t) = ∫ [aα i , t] ψα i ({ωα}i−1, dτ) ψα i ({ωα}i−1, τ)− fα(gαi ({ωα}i−1, τ)) = ∫ [aα i , t] F α,1 i (dτ |{ωα}i−1) 1− F α,1 i (τ−|{ωα}i−1) = ∫ [aα i , t] f ′ α(T α i (τ |{ωα}i−1))F α i (dτ |{ωα}i−1) U({ωα}i−1, τ)[1− F α i (τ−|{ωα}i−1)] . 487 N.S.Gonchar Therefore ∫ [tα i , aα i+1) (1− F α i (s|{ωα}i−1)) εiα F α,1 i (ds|{ωα}i−1) 1− F α,1 i (s−|{ωα}i−1) 6 fα 1 εiαf α 2 . The theorem 5 is proved. Then we assume that interval [a, b) coincides with the interval [0, T ), that is a = 0, b = T. The time T is the terminal time of monotonous of the option. Definition 5. A stock market is effective on the time interval [0, T ), if there is a cer- tain probability space {Ω,F , P}, constructed above, a random process ξ0t ({α, ωα}) on it, describing the evolution of the average price of stocks such that ξ0t ({α, ωα})e −rt is a non-negative uniformly integrable and non-singular martingale on {Ω,F , P} with respect to the flow of the σ-algebras Ft, where the σ-algebras F and Ft are the completion of the σ-algebras F0 and F0 t with respect to the measure P on F0, gen- erated by the family of distribution functions F α i (ω α i |{ωα}i−1). The random process ξ0t ({α, ωα}) has the form ξ0t ({α, ωα}) = B0e rt k(α) ∑ i=1 χ[aα i , aα i+1) (t)ξi,αt ({ωα}i), (23) ξ i,α t ({ωα}i}) = gαi ({ωα}i)χ[aα i , t](ω α i ) + 1 1− F α i (t|{ωα}i−1) ∫ (t, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1)χ(t, aα i+1) (ωα i ), (24) where r is an interest rate, the evolution of price of a stock being described by a certain random process St({α, ωα}) = S0e rt Vα k(α) ∑ i=1 χ[aα i , aα i+1) (t)fα(ξ i,α t ({ωα}i)), Vα = fα(Mαφ α({ωα}k(α))) (25) for a certain family of functions fα(x) > 0, x ∈ R1, α ∈ X0, which are strictly fulfillment, sup x∈R1 |f ′ α(x)| = fα 1 <∞, inf x∈R1 |f ′ α(x)| = fα 2 > 0, moreover, sup i sup {ωα}i−1∈Ωi−1 sup s∈[aα i ,aα i+1) ∆F α i (s|{ωα}i−1) 1− F α i (s−|{ωα}i−1) < fα 2 fα 1 . (26) The limit φα({ωα}k(α))) = lim t→T ξ0t ({α, ωα})B −1 0 e−rt satisfies the conditions: 1) |φα({ωα}k(α))| 6 Cα <∞, α ∈ X0, ∫ X0 Cαdµ(α) <∞; 2) there exists tαi ∈ [aαi , a α i+1) such that |φα({ωα}i−1, s1, {ωα}[i+1,k(α)])− φα({ωα}i−1, s2, {ωα}[i+1,k(α)])| 6 488 Mathematical model of a stock market 6 Cα i |F α i (s1|{ωα}i−1)− F α i (s2|{ωα}i−1)| εiα, εiα > 0, s1, s2 ∈ [tαi , a α i+1), Cα i <∞, i = 1, k(α), {ωα}i−1 ∈ Ωi−1, {ωα}[i+1,k(α)]) ∈ Ωk(α)−i, α ∈ X0. Let us consider an economic agent on the stock market, who acts an as investor, that is, he or she wants to multiply his or her capital using the possibilities of the stock market. We assume that the stock market is effective and the evolution of a stock price occurs according to the formula (25). We assume that the evolution of non-risky active price occurs according to the law B(t) = B0e rt, (27) where r is an interest rate, B0 is an initial capital of the investor on a deposit. Definition 6. A stochastic process δt({α, ωα}) belongs to the class A0, if δt({α, ωα}) = k(α) ∑ i=1 χ[aα i , aα i+1) (t)δi,αt ({ωα}i), δ i,α t ({ωα}i) = b α,1 i ({ωα}i, t)χ[aα i , t](ω α i ) + b α,2 i ({ωα}i−1, t)χ(t, aα i+1) (ωα i ), b α,1 i ({ωα}i, t) is a measurable mapping from the measurable space {Ωi, F̄0 i } to the measurable space {R1,B(R1)} at every fixed t from the interval [0, T ), bα,2i ({ωα}i−1, t) is a measurable mapping from the measurable space {Ωi−1, F̄0 i−1} to the measurable space {R1,B(R1)} at every fixed t ∈ [0, T ). Moreover, bα,1i ({ωα}i, t) is a bounded measurable mapping from the measurable space {[0, T ),B([0, T ))} to the measurable space {R1,B(R1)} at every fixed {ωα}i ∈ Ωi, b α,2 i ({ωα}i−1, t) is a bounded measurable mapping from {[0, T ),B([0, T ))} to {R1,B(R1)} at every fixed {ωα}i−1 ∈ Ωi−1. Let the capital of an investor Xt({α, ωα}) at time t equal Xt({α, ωα}) = B(t)βt({α, ωα}) + γt({α, ωα})St({α, ωα}), (28) where the stochastic processes βt({α, ωα}) and γt({α, ωα}) belong to the class A0. The pair πt = {βt({α, ωα}), γt({α, ωα})} is called the financial strategy of the in- vestor. The capital of the investor with the financial strategy πt will be denoted by Xπ t ({α, ωα}). Definition 7. A financial strategy πt = {βt({α, ωα}), γt({α, ωα})} of an investor is called self-financing if the random processes βt({α, ωα}) and γt({α, ωα}) belong to the class A0, for the investor capital Xπ t ({α, ωα}) the representation Xπ t ({α, ωα}) = Xπ 0 (α) + ∫ [0,t] βτ ({α, ωα})dB(τ) + ∫ [0,t] γτ({α, ωα})dSτ ({α, ωα}) (29) is valid, the discounted capital Y π t ({α, ωα}) = Xπ t ({α, ωα}) B(t) 489 N.S.Gonchar belongs to the class of local martingale on the probability space {Ω,F1, P1} with respect to the flow of the σ-algebras F1 t , M 1|Xπ t ({α, ωα})| < ∞, where F1, P1 and F1 t are constructed in the theorem 5. A class of self-financing strategy is denoted by SF. Lemma 10. Let a financial strategy πt = {βt({α, ωα}), γt({α, ωα})} be self-finan- cing, then for the investor capital the representations Xπ t ({α, ωα}) = Xπ 0 (α) + ∫ [0,t] βτ ({α, ωα})dB(τ) + ∫ [0,t] γτ ({α, ωα})dSτ ({α, ωα}) (30) Xπ t ({α, ωα}) = ertXπ 0 (α) +B0e rt ∫ [0,t] γτ ({α, ωα})dS 0 τ ({α, ωα}) (31) are equivalent, where S0 t ({α, ωα}) = S0 B0Vα k(α) ∑ i=1 χ[aα i , aα i+1) (t)fα(ξ i,α t ({ωα}i)). (32) Proof. Since Xπ t ({α, ωα}) is a process of a bounded variation on any interval [0, t], therefore from (31) and lemma 1 Xπ t ({α, ωα}) = Xπ 0 (α) + ∫ [0,t]    Xα 0 +B0 ∫ [0,t] γτ ({α, ωα})dS 0 τ ({α, ωα})    dert +B0 ∫ [0,t] erτγτ ({α, ωα})dS 0 τ ({α, ωα}) = Xπ 0 (α) + ∫ [0,t] Xτ ({α, ωα}) dB(τ) B(τ) + ∫ [0,t] B(τ)γτ ({α, ωα})dS 0 τ ({α, ωα}). Since St({α, ωα}) = B(t)S0 t ({α, ωα}), dSt({α, ωα}) = S0 t ({α, ωα})dB(t) +B(t)dS0 t ({α, ωα}), (33) therefore, taking into account (28) and (33), we obtain Xπ t ({α, ωα}) = Xπ 0 (α) + ∫ [0,t] βτ ({α, ωα})dB(τ) + ∫ [0,t] dB(τ) B(τ) γτ({α, ωα})Sτ ({α, ωα}) + ∫ [0,t] γτ ({α, ωα})dSτ ({α, ωα})− ∫ [0,t] γτ ({α, ωα})S 0 τ ({α, ωα})dB(τ) 490 Mathematical model of a stock market = Xπ 0 (α) + ∫ [0,t] βτ ({α, ωα})dB(τ) + ∫ [0,t] γτ ({α, ωα})dSτ ({α, ωα}). This proves the lemma 10 in one direction. Applying the same argument in the inverse direction we obtain the proof of the lemma 10. Denote by SFR a set of self-financing strategies satisfying the conditions M1{Y π t ({α, ωα})|F 1 t } > −M1{R|F1 t }, M1R <∞, where R is a non-negative random value on {Ω,F1, P1}. Lemma 11. Let πt = {βt({α, ωα}), γt({α, ωα})} be a self-financing strategy, that is, πt ∈ SFR, then {Y π t ,F 1 t , t ∈ [0, T ]} is a supermartingale and for any stop time τ1 and τ2 such that P1(τ1 6 τ2) = 1 the inequality M1{Y π τ2 ({α, ωα})|F 1 τ1 } 6 Y π τ1 ({α, ωα}) is valid. The proof is similar to the proof of the analogous lemma in [2]. Corollary 3. If πt ∈ SFR, then for any stop time τ > 0, P1(τ <∞) = 1 M1Y π τ ({α, ωα}) 6 Y π 0 (α) = Xπ 0 (α) B0 . Definition 8. A self-financing strategy πt is an arbitrage strategy on [0, T ], if from that Xπ 0 (α) 6 0, Xπ T ({α, ωα}) > 0 it follows that Xπ T ({α, ωα}) > 0 with a positive probability. Lemma 12. Any strategy πt ∈ SFR, where R is non-negative and integrable random value on probability space, is not arbitrage strategy. The proof of the lemma is analogous to the proof of the similar lemma in [2]. Let φT = φT ({α, ωα}) = φα T ({ωα}k(α)) be F 0 measurable random value on the probability space {Ω,F0, P}. Definition 9. A self-financing strategy πt ∈ SFR is (xα, φT )-hedge for the European type option if the capital Xπ t ({α, ωα}), corresponding to this strategy is such that Xπ 0 (α) = xα and with probability 1 with respect to the measure P1 Xπ T ({α, ωα}) > φT ({α, ωα}). (xα, φT )-hedge π ∗ t ∈ SFR is called minimal if for any (xα, φT )-hedge πt ∈ SFR the inequality Xπ T ({α, ωα}) > Xπ∗ T ({α, ωα}) is valid. 491 N.S.Gonchar Then we consider self-financing strategies, belonging to SF 0, that is, in this case Xπ t ({α, ωα}) > 0. Definition 10. Let HT (x α, φT ) be the set of (xα, φT )-hedges from SF 0. Investment value is called the value Cα T (φT ) = inf{xα > 0, HT (x α, φT ) 6= ∅}, α ∈ X0, where ∅ is the empty set. The main problem is to calculate C α T (φT ) and to find an expression for the portfolio of an investor π∗ t at every moment of time t the initial capital of which is xα. Further on we assume that T <∞, then lim t→T St({α, ωα}) = ST ({α, ωα}) = S0e rT Vα fα(φ({α, ωα})). Theorem 6. Let a stock market be effective, the evolution of a risky active price comes according to the formula (25) and the evolution of non-risky active price occur by (27). If f(x) is a certain function such that |f(x1)− f(x2)| 6 C|x1 − x2| and the paying function at terminal time T is given by the formula fT ({α, ωα}) = f(ST ({α, ωα})), moreover, the conditions ∫ X0 fα 1 Cα Vα dµ(α) <∞, ∫ X0 fα(0) Vα dµ(α) <∞, are valid, then the minimal hedge π∗ t exists, evolution of the capital investor X∗ t ({α, ωα}), option price X∗ 0 (α) and self-financial strategy {β∗ t ({α, ωα}), γ∗t ({α, ωα})} corresponding to the minimal hedge π∗ t are given by the formulas X∗ t ({α, ωα}) = er(t−T )M1{f(ST ({α, ωα}))|F 1 t }, (34) X∗ 0 (α) = e−rTM1 αf(ST ({α, ωα})), γ∗t ({α, ωα}) = ψk(α)(t|{ω}α), (35) β∗ t ({α, ωα}) = X∗ t ({α, ωα})− γ∗t ({α, ωα})St({α, ωα}) B(t) , (36) where ψk(α)(s|ωα) = k(α) ∑ i=1 χ[aα i , aα i+1) (s) ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) , ϕ 0,α i (s|{ωα}i−1) = = fα(g α i ({ωα}i−1, s)) − 1 1 − F α,1 i (s|{ωα}i−1) ∫ (s, aα i+1) fα(g α i ({ωα}i))F α,1 i (dωα i |{ωα}i−1), 492 Mathematical model of a stock market ϕα i (s|{ωα}i−1) = = φ̄α i ({ωα}i−1, s)− 1 1− F α,1 i (s|{ωα}i−1) ∫ (s, aα i+1) φ̄α i ({ωα}i)F α,1 i (dωα i |{ωα}i−1), φ̄α i ({ωα}i) = 1 B0erT ∫ Ωi+1 . . . ∫ Ωk(α) f(S0e rTVα −1fα(φ α({ωα}i, {ωα}[i+1,k(α)]))) ×F α,1 i+1(dω α i+1|{ωα}i)× . . .× F α,1 k(α)(dω α k(α)|{ωα}k(α)−1). Proof. To prove the theorem 6 it is sufficient to verify the monotonous of the conditions of the theorem 5. Since ST ({α, ωα}) = S0e rT Vα fα(φ({α, ωα})), then f(ST ({α, ωα})) B0erT 6 6 1 B0erT [ f(0) + CS0e rT fα(0) Vα + CS0e rT f α 1 Cα Vα ] = C ′ α, ∫ X0 C ′ αdµ(α) <∞. |f(fα(φ α({ωα}i−1, s1, {ωα}[i+1,k(α)])))− f(fα(φ α({ωα}i−1, s2, {ωα}[i+1,k(α)])))| 6 6 Cfα 1 C α i |F α i (s1|{ωα}i−1)− F α i (s2|{ωα}i−1)| εiα, εiα > 0, s1, s2 ∈ [tαi , a α i+1), i = 1, k(α), {ωα}i−1 ∈ Ωi−1, {ωα}[i+1,k(α)]) ∈ Ωk(α)−i, α ∈ X0. Further, ξ0t ({α, ωα})e rT is a non-negative martingale on {Ω,F , P} satisfying condi- tions: sup {ωα}i∈Ωi |gαi ({ωα}i)| = βα i 6 Cα <∞, i = 1, k(α), α ∈ X0, moreover, since gαi ({ωα}i) = ∫ Ωi+1 . . . ∫ Ωk(α) φα({ωα}i, {ωα}[i+1,k(α)]) ×F α i+1(dω α i+1|{ωα}i)× . . .× F α k(α)(dω α k(α)|{ωα}k(α)−1). |φα({ωα}i−1, s1, {ωα}[i+1,k(α)])− φα({ωα}i−1, s2, {ωα}[i+1,k(α)])| 6 6 Cα i |F α i (s1|{ωα}i−1)− F α i (s2|{ωα}i−1)| εiα, εiα > 0, s1, s2 ∈ [tαi , a α i+1), Cα i <∞, i = 1, k(α), {ωα}i−1 ∈ Ωi−1, {ωα}[i+1,k(α)] ∈ Ωk(α)−i, α ∈ X0, 493 N.S.Gonchar therefore ∫ [aα i , aα i+1) |ρ0,αi (s|{ωα}i−1)| F α i (ds|{ωα}i−1) 1− F α i (s−|{ωα}i−1) <∞, {ωα}i−1 ∈ Ωi−1, α ∈ X0, ρ 0,α i (s|{ωα}i−1) = = gαi ({ωα}i−1, s)− 1 1− F α i (s|{ωα}i−1) ∫ (s, aα i+1) gαi ({ωα}i)F α i (dω α i |{ωα}i−1). Hence it follows that for the regular martingale M1 { f(ST ({α, ωα})) B0erT ∣ ∣ ∣ ∣ F1 t } the representation M1 { f(ST ({α, ωα})) B0erT ∣ ∣ ∣ ∣ F1 t } = =M1 α f(ST ({α, ωα})) B0erT + ∫ [a,t] ψk(α)(τ |ωα)dS̄ 0 τ ({α, ωα}), t ∈ [a, b) is valid, where ψk(α)(s|ωα) = k(α) ∑ i=1 χ[aα i , aα i+1) (s) ϕα i (s|{ωα}i−1) ϕ 0,α i (s|{ωα}i−1) , ϕ 0,α i (s|{ωα}i−1) = = fα(g α i ({ωα}i−1, s)) − 1 1− F α,1 i (s|{ωα}i−1) ∫ (s, aα i+1) fα(g α i ({ωα}i))F α,1 i (dωα i |{ωα}i−1), ϕα i (s|{ωα}i−1) = = φ̄α i ({ωα}i−1, s)− 1 1− F α,1 i (s|{ωα}i−1) ∫ (s, aα i+1) φ̄α i ({ωα}i)F α,1 i (dωα i |{ωα}i−1), φ̄α i ({ωα}i) = 1 B0erT ∫ Ωi+1 . . . ∫ Ωk(α) f(S0e rTVα −1fα(φ α({ωα}i, {ωα}[i+1,k(α)]))) ×F α,1 i+1(dω α i+1|{ωα}i)× . . .× F α,1 k(α)(dω α k(α)|{ωα}k(α)−1). S̄0 t ({α, ωα}) is a modification of S0 t ({α, ωα}) = S0 B0Vα k(α) ∑ i=1 χ[aα i , aα i+1) (t)fα(ξ i,α t ({ωα}i)). 494 Mathematical model of a stock market such that S̄0 t ({α, ωα}) is a regular martingale on the probability space {Ω,F1, P1}, where F1 is the completion of F 0 with respect to the measure P1, generated by the family of distributions F α,1 i (ωα i |{ωα}i−1), i = 1, k(α), α ∈ X0 and fα(ξ i,α t ({ωα}i})) = fα(g α i ({ωα}i))χ[aα i , t](ω α i ) + 1 1− F α,1 i (t|{ωα}i−1) ∫ (t, aα i+1) fα(g α i ({ωα}i))F α,1 i (dωα i |{ωα}i−1)χ(t, aα i+1) (ωα i ), i = 1, k(α), α ∈ X0. The latter means that for the discounted capital Yt({α, ωα}) =M1 { f(ST ({α, ωα})) B0erT |F1 t } the representation Yt({α, ωα}) = =M1 α f(ST ({α, ωα})) B0erT + ∫ [a,t] ψk(α)(τ |ωα)dS̄ 0 τ ({α, ωα}), t ∈ [a, b) is valid. Since Xt({α, ωα}) = B0e rtYt({α, ωα}), then Xt({α, ωα}) = erte−rTM1 αf(ST ({α, ωα})) +B0e rt ∫ [a,t] ψk(α)(τ |ωα)dS 0 τ ({α, ωα}), t ∈ [a, b). (37) Taking into account the lemma 10, the definition of self-financing strategy, we obtain the proof of the theorem 6. References 1. Neveu J. Bases Mathematiques du Calcul des Probabilites. Paris, Masson et Cie, 1964. 2. Gonchar N.S. Financial Mathematics, Economic Growth. Kyiv, Rada, 2000 (in Rus- sian). 495 N.S.Gonchar Математична модель фондового ринку М.С. Гончар Інститут теоретичної фізики ім. М.М.Боголюбова НАН України, 252143 Київ, вул. Метрологічна, 14б Отримано 30 травня 2000 р. В роботі побудовано математичну модель ринку цінних паперів. От- римані результати є доброю основою для аналізу подій на фондово- му ринку. Ключові слова: випадковий процес, ефективний ринок цінних паперів, оцінювання опціонів PACS: 02.50.+s, 05.40.+j 496