Analysis of the silicon solar cells efficiency. Type of doping and level optimization

The theoretical analysis of photovoltaic conversion efficiency of highly effective silicon solar cells (SC) has been performed for n-type and p-type bases. Considered here is the case when the Shockley–Read–Hall recombination in the silicon bulk is determined by the deep level of Fe. It has shown th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Sachenko, A.V., Kostylyov, V.P., Gerasymenko, M.V., Korkishko, R.M., Kulish, M.R., Slipchenko, M.I., Sokolovskyi, I.O., Chernenko, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2016
Schriftenreihe:Semiconductor Physics Quantum Electronics & Optoelectronics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/121527
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Analysis of the silicon solar cells efficiency. Type of doping and level optimization / A.V. Sachenko, V.P. Kostylyov, M.V. Gerasymenko, R.M. Korkishko, M.R. Kulish, M.I. Slipchenko, I.O. Sokolovskyi, V.V. Chernenko // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2016. — Т. 19, № 1. — С. 67-74. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The theoretical analysis of photovoltaic conversion efficiency of highly effective silicon solar cells (SC) has been performed for n-type and p-type bases. Considered here is the case when the Shockley–Read–Hall recombination in the silicon bulk is determined by the deep level of Fe. It has shown that, due to asymmetry of recombination parameters inherent to this level, the photovoltaic conversion efficiency is increased in SC with the n-type base and decreased in SC with the p-type base with the increase in doping. Two approximations for the band-to-band Auger recombination lifetime dependence on the base doping level are considered when performing the analysis. The experimental results are presented for the key characteristics of SC based on a-Si:H–n-Si heterojunctions with intrinsic thin layer (HIT). A comparison between the experimental and calculated values of the HIT cell characteristics has been made. The surface recombination velocity and series resistance are determined from it with a complete coincidence of the experimental and calculated SC parameters’ values. Apart from the key characteristics of SC, surface recombination rate and series resistance were determined from the results of this comparison, in full agreement with the experimental findings.