Особые периодические решения обобщенного случая Делоне

Рассматривается аналог случая Делоне для задачи о вращении волчка Ковалевской в двойном силовом поле. Уравнения движения на инвариантном многообразии, указанном О.И. Богоявленским, представляют собой вполне интегрируемую гамильтонову систему с двумя степенями свободы. Множество точек зависимости дву...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Механика твердого тела
Дата:2006
Автор: Харламов, М.П.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/123787
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Особые периодические решения обобщенного случая Делоне / М.П. Харламов // Механика твердого тела: Межвед. сб. науч. тр. — 2006. — Вип. 36. — С. 23-33. — Бібліогр.: 9 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Рассматривается аналог случая Делоне для задачи о вращении волчка Ковалевской в двойном силовом поле. Уравнения движения на инвариантном многообразии, указанном О.И. Богоявленским, представляют собой вполне интегрируемую гамильтонову систему с двумя степенями свободы. Множество точек зависимости двух первых интегралов состоит из трех однопараметрических семейств периодических траекторий. Для этих решений все фазовые переменные алгебраически выражены через одну вспомогательную переменную, зависимость которой от времени находится в эллиптических функциях. Исследованы условия вещественности решений и количество траекторий для всех значений параметров. Для примера выполнено полное интегрирование в функциях Якоби на одном из семейств.
ISSN:0321-1975