Теоремы Лиувилля, Пикара и Сохоцкого для кольцевых отображений
Доказано, что изолированная особенность x₀ ∊ D открытого дискретного кольцевого Q-отображения f : D\{x₀} → Rⁿ устранима, если функция Q(x) имеет конечное среднее колебание, либо логарифмические особенности порядка не выше, чем n − 1 в точке x0. Более того, продолженное отображение открыто и дискретн...
Gespeichert in:
| Veröffentlicht in: | Український математичний вісник |
|---|---|
| Datum: | 2008 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2008
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/124347 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Теоремы Лиувилля, Пикара и Сохоцкого для кольцевых отображений / Е.А.Севостьянов // Український математичний вісник. — 2008. — Т. 5, № 3. — С. 366-381. — Бібліогр.: 26 назв. — рос. |