Upper bounds on second order operators, acting on metric function
We prove upper bounds on the general second order operator acting on metric function. The suggested approach does not use traditional formulas for deviations of geodesics and Jacobi fields construction and leads to the manifolds generalization of the classical coercitivity and dissipativity conditio...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124513 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Upper bounds on second order operators, acting on metric function / A.V. Antoniouk // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 163-172. — Бібліогр.: 12 назв. — англ. |