Upper bounds on second order operators, acting on metric function
We prove upper bounds on the general second order operator acting on metric function. The suggested approach does not use traditional formulas for deviations of geodesics and Jacobi fields construction and leads to the manifolds generalization of the classical coercitivity and dissipativity conditio...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2007 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/124513 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Upper bounds on second order operators, acting on metric function / A.V. Antoniouk // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 163-172. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-124513 |
|---|---|
| record_format |
dspace |
| spelling |
Antoniouk, A.V. 2017-09-28T13:36:56Z 2017-09-28T13:36:56Z 2007 Upper bounds on second order operators, acting on metric function / A.V. Antoniouk // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 163-172. — Бібліогр.: 12 назв. — англ. 1810-3200 2000 MSC. 35A15, 53C21, 58E35. https://nasplib.isofts.kiev.ua/handle/123456789/124513 We prove upper bounds on the general second order operator acting on metric function. The suggested approach does not use traditional formulas for deviations of geodesics and Jacobi fields construction and leads to the manifolds generalization of the classical coercitivity and dissipativity conditions for diffusion equations. Author is grateful to referees for their comments about previous version of the article. en Інститут прикладної математики і механіки НАН України Український математичний вісник Upper bounds on second order operators, acting on metric function Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Upper bounds on second order operators, acting on metric function |
| spellingShingle |
Upper bounds on second order operators, acting on metric function Antoniouk, A.V. |
| title_short |
Upper bounds on second order operators, acting on metric function |
| title_full |
Upper bounds on second order operators, acting on metric function |
| title_fullStr |
Upper bounds on second order operators, acting on metric function |
| title_full_unstemmed |
Upper bounds on second order operators, acting on metric function |
| title_sort |
upper bounds on second order operators, acting on metric function |
| author |
Antoniouk, A.V. |
| author_facet |
Antoniouk, A.V. |
| publishDate |
2007 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We prove upper bounds on the general second order operator acting on metric function. The suggested approach does not use traditional formulas for deviations of geodesics and Jacobi fields construction and leads to the manifolds generalization of the classical coercitivity and dissipativity conditions for diffusion equations.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/124513 |
| citation_txt |
Upper bounds on second order operators, acting on metric function / A.V. Antoniouk // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 163-172. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT antonioukav upperboundsonsecondorderoperatorsactingonmetricfunction |
| first_indexed |
2025-11-29T00:10:58Z |
| last_indexed |
2025-11-29T00:10:58Z |
| _version_ |
1850854284193693696 |