Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime

Magnetostriction mea sure ments in the mixed state of superconducting 2H-NbSe₂ single crystals under in-plane magnetic fields 0-12 T have revealed a peak on the magnetostriction versus magnetic field dependences in the vicinity of the upper critical field Hc₂. The peak value of the longitudinal magn...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Eremenko, V.V., Sirenko, V.A., Shabakayeva, Yu.A., Gammel, P.L.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2002
Назва видання:Физика низких температур
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/129159
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime / V.V. Eremenko, V.A. Sirenko, Yu. A. Shabakayeva, R.Schleser, P.L. Gammel // Физика низких температур. — 2002. — Т. 28, № 1. — С. 10-15. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-129159
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1291592025-02-09T14:08:43Z Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime Eremenko, V.V. Sirenko, V.A. Shabakayeva, Yu.A. Gammel, P.L. Свеpхпpоводимость, в том числе высокотемпеpатуpная Magnetostriction mea sure ments in the mixed state of superconducting 2H-NbSe₂ single crystals under in-plane magnetic fields 0-12 T have revealed a peak on the magnetostriction versus magnetic field dependences in the vicinity of the upper critical field Hc₂. The peak value of the longitudinal magnetostriction is higher by more than an order of magnitude in comparison with that of the trans verse magnetostriction when measured along the hexagonal axis. Analysis of the measured field dependences of the magnetostriction and magnetization of 2H-NbSe₂ allows one to relate the observed peculiarities of magnetostriction with the loss of order in the lat tice of Abrikosov vortices, which occurs by a first-order phase transition. Remove selected 2002 Article Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime / V.V. Eremenko, V.A. Sirenko, Yu. A. Shabakayeva, R.Schleser, P.L. Gammel // Физика низких температур. — 2002. — Т. 28, № 1. — С. 10-15. — Бібліогр.: 25 назв. — англ. 0132-6414 PACS: 75.80.+q, 74.25.Hq, 74.70.Ad https://nasplib.isofts.kiev.ua/handle/123456789/129159 en Физика низких температур application/pdf Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Свеpхпpоводимость, в том числе высокотемпеpатуpная
Свеpхпpоводимость, в том числе высокотемпеpатуpная
spellingShingle Свеpхпpоводимость, в том числе высокотемпеpатуpная
Свеpхпpоводимость, в том числе высокотемпеpатуpная
Eremenko, V.V.
Sirenko, V.A.
Shabakayeva, Yu.A.
Gammel, P.L.
Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime
Физика низких температур
description Magnetostriction mea sure ments in the mixed state of superconducting 2H-NbSe₂ single crystals under in-plane magnetic fields 0-12 T have revealed a peak on the magnetostriction versus magnetic field dependences in the vicinity of the upper critical field Hc₂. The peak value of the longitudinal magnetostriction is higher by more than an order of magnitude in comparison with that of the trans verse magnetostriction when measured along the hexagonal axis. Analysis of the measured field dependences of the magnetostriction and magnetization of 2H-NbSe₂ allows one to relate the observed peculiarities of magnetostriction with the loss of order in the lat tice of Abrikosov vortices, which occurs by a first-order phase transition. Remove selected
format Article
author Eremenko, V.V.
Sirenko, V.A.
Shabakayeva, Yu.A.
Gammel, P.L.
author_facet Eremenko, V.V.
Sirenko, V.A.
Shabakayeva, Yu.A.
Gammel, P.L.
author_sort Eremenko, V.V.
title Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime
title_short Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime
title_full Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime
title_fullStr Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime
title_full_unstemmed Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime
title_sort irreversible magnetostriction and magnetization of the superconduting 2h-nbse₂ single crystals in a peak-effect regime
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2002
topic_facet Свеpхпpоводимость, в том числе высокотемпеpатуpная
url https://nasplib.isofts.kiev.ua/handle/123456789/129159
citation_txt Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe₂ single crystals in a peak-effect regime / V.V. Eremenko, V.A. Sirenko, Yu. A. Shabakayeva, R.Schleser, P.L. Gammel // Физика низких температур. — 2002. — Т. 28, № 1. — С. 10-15. — Бібліогр.: 25 назв. — англ.
series Физика низких температур
work_keys_str_mv AT eremenkovv irreversiblemagnetostrictionandmagnetizationofthesuperconduting2hnbse2singlecrystalsinapeakeffectregime
AT sirenkova irreversiblemagnetostrictionandmagnetizationofthesuperconduting2hnbse2singlecrystalsinapeakeffectregime
AT shabakayevayua irreversiblemagnetostrictionandmagnetizationofthesuperconduting2hnbse2singlecrystalsinapeakeffectregime
AT gammelpl irreversiblemagnetostrictionandmagnetizationofthesuperconduting2hnbse2singlecrystalsinapeakeffectregime
first_indexed 2025-11-26T15:23:08Z
last_indexed 2025-11-26T15:23:08Z
_version_ 1849866942644486144
fulltext Fizika Nizkikh Temperatur, 2002, v. 28, No. 1, p. 10–15 Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe2 single crystals in a peak-effect regime V. V. Eremenko, V. A. Sirenko, and Yu. A. Shabakayeva B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., 61103 Kharkov, Ukraine E-mail: sirenko@ilt.kharkov.ua R. Schleser Grenoble High Magnetic Field Laboratory, MPI-FKF and CNRS BP-166, F-38042, Grenoble Cedex 09, France P. L. Gammel Bell Laboratories, Lucent Technologies Murray Hill, New Jersey 07974, USA Received August 31, 2001 Magnetostriction mea sure ments in the mixed state of super con duct ing 2H-NbSe2 sin gle crys tals un der in-plane mag netic fields 0–12 T have re vealed a peak on the magnetostriction ver sus mag netic field dependences in the vi cin ity of the up per crit i cal field Hc2 . The peak value of the lon gi tu di nal magnetostriction is higher by more than an or der of mag ni tude in com par i son with that of the trans verse magnetostriction when mea sured along the hex ag o nal axis. Anal y sis of the mea sured field dependences of the magnetostriction and mag ne ti za tion of 2H-NbSe2 al lows one to re late the ob served pe cu liar i ties of magnetostriction with the loss of or der in the lat tice of Abrikosov vor ti ces, which oc curs by a first-order phase tran si tion. PACS: 75.80.+q, 74.25.Hq, 74.70.Ad 1. Introduction The ob ser va tion of gi ant magnetostriction in high-temperature su per con duc tors [1–3], along with es tab lish ing its re la tion to the in ter ac tions be - tween the crys tal lat tice inhomogeneities and the ar range ment of Abrikosov vor ti ces [4], en ables one to use magnetostriction mea sure ments as the tool for ex am i na tion of a va ri ety of phe nom ena in the vor tex as sem bly, which re sults from mag netic flux pin ning. An im por tant di rec tion in this field of in - ves ti ga tion is elu ci da tion of the or i gin of the peak ef fect, which is the peak on the field dependences of the crit i cal cur rent near the up per crit i cal field Hc2 , man i fested as the max i mum on the field dependences of the ir re vers ible mag ne ti za tion [5], and of its con nec tion with the phase tran si tions in a flux-line lat tice [6]. It should be men tioned that an ad van tage of mag netic stud ies of the peak ef fect is that they pro vide di rect data on the ther mo dy namic pa ram e ters of the tran si tion. Many years of re search on the field dependences of the crit i cal cur rents and mag ne ti za tion of type-II su per con duc tors have shown that in gen eral the peak ef fect is ob served in dif fer ent ranges of mag - netic fields be tween the lower Hc1 and up per Hc2 crit i cal fields, and the shape of the peak is de - scribed by an ex pres sion ( ) ( )H f bc n 2 , with f b( ) si - milar at all tem per a tures be low TSN , where b is the re duced mag netic in duc tion in the sam ple, and n = 1–3, de pend ing on the type of pin ning cen ter and the pin ning mech a nism in volved [5]. The peaks on the field dependences of the magnetostriction were ob served in [2,7,8] on sin gle crys tals of high-temperature su per con duc tors (HTSCs) of the 1-2-3 type with rare-earth sub sti tu tions, poly crys - © V. V. Eremenko, V. A. Sirenko, Yu. A. Shabakayeva, R. Schleser, and P. L. Gammel, 2002 tals of Nb–Ti al loys, and sin gle crys tals of the laye - red com pound 2H-NbSe2 , re spec tively. For HTSCs it was shown [2] that the peaks in the in ter me di ate field range cor re spond to the tra di tional mech a - nisms of pin ning (n = 2.5). For ex pla na tion of the ob served value n = 4.5 for the magnetostriction peak in Nb–Ti the field de pend ence of the Young’s moduli of the crys tal lat tice was taken into ac - count. The value n = 6.5 ± 0.2 for the mag neto - striction in 2H-NbSe2 will be an a lyzed in the pre - sent work. 2. Experimental results The mea sure ments were per formed on high- qua - lity sin gle crys tals of the super con duct ing com - pound 2H-NbSe2 with the super con duct ing tran si - tion tem per a ture TSN = 7.2 K. 2.1. Magnetostriction measurements The magnetostriction mea sure ments were per - formed in a cryo genic ca pac i tance dilatometer [8]. The lon gi tu di nal λ( , )a a and trans verse λ( , )c a mag - netostriction val ues were mea sured in a field ap - plied in the basal plane of the sam ple along the a axis. The mea sure ments of λ( , )c a and λ( , )a a in in - creased field at tem per a ture T = 1.5 K are pre sented in Fig. 1. It is clearly seen that at fields near Hc2 a pro nounced peak is ob served, and the ab so lute val - ues of λ( , )c a are much lower than those for λ( , )a a . 2.2. Magnetization measurements The mag ne ti za tion mea sure ments were per - formed along the crys tal lo graphic c di rec tion by means of a mag netic ca pac i tance torque meter tech - nique [9]. The ab so lute val ues of the mag ne ti za tion were ob tained us ing a cal i bra tion coil [10]. The mea sure ments at tem per a ture T = 1.5 K are shown in Fig. 2. Fig ure 3 pres ents ir re vers ible com - po nent of mag ne ti za tion for dif fer ent tem per a tures. Fig ure 4 dem on strates ir re vers ible magnetostriction and mag ne ti za tion in re duced co or di nates. For the magnetostriction and mag ne ti za tion mea sure ments the scal ing law with n = 6.5 ± 0.2 is ful filled. 3. Discussion The unit cell of this com pound com prises two sand wiches. Each of them is a hex ag on ally packed plane of Nb be tween two hex ag on ally packed planes of Se. The planes are shifted with re spect to each other, and at oms of Se form a trigonal en vi - ron ment of the Nb at oms. The Nb planes are re spon - Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe 2 single crystals Fizika Nizkikh Temperatur, 2002, v. 28, No. 1 11 Fig. 1. Magnetostriction λ versus magnetic field mea - sure ments. Fig. 2. Absolute magnetization measurements along the c di rection for an in-plane direction of the magnetic field. The in set shows the enlarged region of the peak effect. Fig. 3. Field dependence of the irreversible mag ne ti - zation. si ble for the su per con duc tiv ity of this com pound. The dis tance be tween the near est Nb planes is d c= =/ .2 6 27 Å where c is the lat tice spac ing along the hex ag o nal axis. The in-plane lat tice pa - ram e ters are a b= = 3 45. Å. The ra tio of the lat tice pa ram e ters at tests to pro nounced crys tal lo graphic ani so tropy. At the same time 2H-NbSe 2 should not be con sid ered as quasi-two-dimensional su per con - duc tor, as its super con duct ing co her ence length along the hex ag o nal axis is twice the interplane spac ing ξ c d> (ξc( )0 23= Å). This is a typ i cal highly anisotropic su per con duc tor (ξab( )0 78= Å), which is char ac ter ized by an ani so tropy pa ram e ter γ ξ ξ= = ≈( / ) //M m ab c 1 2 3, or in al ter na tive def i ni tions ε2 0 09= ≈m M/ . (m m m= =1 2 and M m= 3 are the ef fec tive elec tron masses along and nor mal to the crys tal lo graphic planes). Such high val ues of the ani so tropy pa ram e ters of 2H-NbSe 2 pro vide an ad e quate de scrip tion of its super con - duct ing prop er ties by the Ginzburg–Lan dau equ - ations [11] with the anisotropic mass ten sor ([12] and ref er ences therein). For our case m1 = <m m2 3 ; m m H c H cc c1 3 2 2 2/ [ ( | | )/ ( )]= ⊥ . We take into con sid er ation the fol low ing ex pres sion Hc ab2 0 2 2 2 1 2 22( ) /[ (sin cos ) ]/θ π θ ε θ ξ= +Φ (1) (Φ0 is the quan tum of mag netic flux, and θ is the an gle be tween the di rec tion of the ap plied mag netic field and the c axis), which de fines the co her ence length val ues. Va lid ity of this ap proach sig nif i cantly sim pli fies anal y sis of the an gu lar dependences of the mea - sured prop er ties, which in part will be con sid ered in this pa per. 3.1. Anisotropy of magnetostriction at H H Hc1 c2< << The ob served dif fer ences of λ( , )c a and λ( , )a a in the fields be low the peak val ues may be ex plained in the fol low ing way. In fields ap plied along the ex tended sur face of the sam ple in the a axis di rec - tion, mag netic flux pen e trates the sam ple along the b axis. Un der this con di tion the pen e tra tion is post - poned by a sur face bar rier un til the mag netic field H is in creased to the value H Hc≈ 2 7. [5], where Hc is the crit i cal field, which is de ter mined by the dif fer ence of free en ergy val ues in the nor mal and super con duct ing states, and which is much higher than Hc1. The low-temperature limit of Hc for the com pound un der in ves ti ga tion is Hc ≈ 0 14. T [13]. In this range of mag netic fields the magneto stric - tion is de ter mined by the pres sure of the mag netic field and by the ra tio of elas tic con stants in diffe - rent crys tal lo graphic di rec tions. From the the ory of elas tic ity the re la tion be tween λ( , )c a and λ( , )a a may be de rived: λ λ( , )/ ( , ) ( )/( ).c a a a C C C C C C= − − −13 11 12 11 33 13 2 The right side of this re la tion in cludes the components of the elas tic-modulus ten sor of the crys tal lat tice. In tro ducing their val ues from [13], one ob tains the ra tio λ λ( , )/ ( , )a a c a = = − = −0 76 0 12 6 3. / . . , which is in good agree ment with the mea sure ments in fields well be low Hc2 . When the mag netic flux pen e trates the sam ple along the b axis, the val ues of λ( , )c a are de ter - mined by the ra tios of the vol umes of the nor mal and super con duct ing parts of the sam ple [8] and are pro por tional to the size dif fer ences δT c(| | ) in the nor mal and super con duct ing states along the dis tin guished crys tal lo graphic di rec tion in the ab - sen ce of mag netic field. This quan tity is de ter mi ned by re la tion δT c cc H H P c(| | ) ~ [ / (| | )]∂ ∂ , or accor - ding to [13] δT c(| | ) ~ H T T P cc SN SN 2 / [ / (| | )]∂ ∂ . Sub sti tu tion of the val ues ∂ ∂T P cSN / (| | ) ≈ ≈ ⋅18 1010. from [14] gives a sa tisfactory agree ment with the mea sure ments [8] δT c(| | ) ≈ ⋅ −2 10 7. It is known [14] that the in-plane pres sure de pend ence of TSN dif fers sig nif i cantly from that in the c direction. Pres sure along the c axis weakly in - creases the tran si tion tem per a ture, while in-plane pres sure in creases it sig nif i cantly. In first ap prox i - ma tion it should be as sumed that the be low peak val ues, λ( , )a a is also de fined by the vol u met ric ra - tio of the nor mal part of the sam ple due to weak pin ning (the ra tio of the crit i cal cur rents of de - pinning and depairing j jc / 0 610≈ − [15] is sur - pris ingly small). There fore, the ra tio of λ( , )c a to λ( , )a a in the field be low peak is de fined by the relation [ / (| | )]/[ / ( )] .∂ ∂ ∂ ∂ ⊥ ≈T P c T P cSN SN 0 45 [15], which sat is fies the ex per i men tal data for the re vers ible com po nent of the magnetostriction [8]. It ap pears that for ex pla na tion of the ir re vers ible magnetostriction we can not ne glect the pin ning in the basal plane par al lel to ap plied mag netic field. 3.2. Magnetostriction in the fields near Hc2 In [16,17] the peak ef fect in the field de pen - dences of the crit i cal cur rents near Hc2 was attri - buted to the change of the elas tic moduli of the flux-line lat tice when the field ap proaches Hc2 . In [16] it was the de crease of the shear modu lus C66 , which oc curs faster than the de crease of the pin ning force. As a re sult, the vor texes re dis trib ute in ac cor dance with the spa tial dis tri bu tion of pin - ning cen ters or the pin ning po ten tial re lief. This sit u a tion cor re sponds to a loss of spa tial or der in 12 Fizika Nizkikh Temperatur, 2002, v. 28, No. 1 V. V. Eremenko, V. A. Sirenko, Yu. A. Shabakayeva, R. Schleser, and P. L. Gammel the flux-line lat tice and, in prin ci ple, re sem bles melt ing pro cesses. It was de scribed in [18] in terms of the cor re la tion vol ume Vc of the flux-line lat tice re gions which can move in de pend ently of each other. The re sults of this work have been used suc - cess fully for ex am i na tion of trans for ma tions in the vor tex ar rays of anisotropic su per con duc tors. The pos si bil ity of trans for ma tions de vel op ing via a first- order phase tran si tion was an a lyzed in [19]. It was sug gested that the tran si tion is re al ized in the fluc tu a tion re gime when the Lindemann cri te - rion [20] is ful filled, i.e. when the mean-square am - pli tude of the vor tex fluc tu a tion dis place ments amounts to about 0.2a0 , where a0 is the vor tex lat - tice pa ram e ter. It is a re sult of the loss of or der in the vor tex lat tice or the de crease of Vc when the mag netic field ap proaches Hc2 . A com par a tive ana - l y sis of the magnetostriction and mag ne ti za tion mea sure ments al lows us to check if this sit u a tion is char ac ter is tic for our case. It should be noted that a fluc tu a tion con tri bu tion to the be hav ior of su per - conducting 2H-NbSe 2 is prob a ble, as the Ginz burg num ber [21], which char ac ter izes im por tance of the fluc tu a tion con tri bu tion, is rather high: Gi = = ≈ −k T HB SN c/ 2 3 410εξ . For HTSCs it is of the or der of 10 2− , and for other con ven tional su per con - duc tors it is of the or der 10 8− [15]. This is, in part, the rea son for the no tice able dif fer ence be tween the fields Hc2 and H*, where H* is the field above which all ir re vers ible char ac ter is tics van ish (H Hc * ≈ 2). The ad van tage of 2H-NbSe2 for ana - lysis of the tran si tion pro cesses is that, in con trast to HTSCs, there is no flux creep in it, not with - stand ing the high level of ther mal fluc tu a tions. In ad di tion, the in set in Fig. 2 dem on strates that in the peak re gime the mag ne ti za tion run (the low-field arm of the peak) is ir re vers ible. It may be a proof of the first-order phase tran si tion, on the one hand, and a man i fes ta tion of vor tex lat tice dis - or der ing and the con se quent spread over pin ning cen ters, on the other. So, the ex per i men tal data do not con tra dict the pro posed de scrip tion. In com par ing the data on the magnetostriction and mag ne ti za tion we should keep in mind that in the lat ter case the torque was reg is tered in a tilted field, which is a nec es sary con di tion for ap pli ca tion of such a mea sur ing tech nique. The cho sen value θ = °77 cor re sponds to the max i mum sig nal [22]. Anal y sis of the an gu lar dependences and com par i - son of the data ob tained at dif fer ent θ is pos si ble due to ap pli ca bil ity of Ginzburg–Lan dau the ory with an anisotropic mass ten sor to the com pound un der study (the re la tions are pre sented in [6]). 3.3. Phase transition In or der to an a lyze the pos si bil ity that a first- or der phase tran si tion in the vor tex ar ray is ma - nifestated in the peak ef fect, the re la tion de rived for the flux-line lat tice from the Lindemann cri te - rion [19,20] will be used: H T c H T Tm m L c SN( ) ( / ) ( )( / )= ×β Gi 2 20 × − −[ ( / ) / ( )]1 02 2T T H HSN m c , (2) where β m ≈ 5 6. , cL = 0.23–0.15 is the Lindemann cri te rion in sys tems with vari able pin ning, and Hm is the melt ing field of the flux-line lat tice. The lo - ca tion of the mea sured high-field mag ne tostriction and mag ne ti za tion peak-effect curves, namely H*, suits well the value of H Tm( ) if the superconduc - ting pa ram e ters of 2H-NbSe2 are sub sti tuted into Eq. (2). The ex per i men tally ob served jump in the equi lib rium mag ne ti za tion near H* at T = 1.5 K is ∆M ≈ 5 G, and the cor re spond ing elon ga tion is ∆L ≈ ⋅ −2 10 8 mm. There fore, the pres sure de riv a - tive of the tran si tion field may be es ti mated us ing the Clapeyron–Clausius re la tion: ∆ ∆L c M(| | )/ = = ∂ ∂H P c* / (| | ). Sub sti tu tion of the mag ni tudes ob tained gives a rea son able [14] es ti mate ∂ ∂ ≈H P c* / (| | ) 0.6–0.8 G/bar. 3.4. Scaling law for isothermal field dependences of magnetostriction The anal y sis of the magnetostriction mea - surements in the peak re gime ac cord ing to the scheme [2,7] have shown that the field depen - dences of the ir re vers ible com po nent of the mag - netostriction λ irr ( , )c a mea sured at dif fer ent tem - per a tures fol low the scal ing laws M H n irr ~ ( )* and λirr ~ ( )*H n with the same power n = 6.5 ± 0.2. Con se quently, for anal y sis of the ob served de pen - dences the con cepts de vel oped for the triv ial peak ef fect may be used, and the field dependences of the elas tic moduli of the crys tal lat tice may in our case be ex cluded from con sid er ation of the mag - netostriction peak. In view of the soft en ing of the flux-line lat tice in a peak ef fect re gime and the in - de pend ent dis place ments of its parts with the cor - re la tion vol ume Vc , the re la tion for col lec tive pin - ning in the peak re gion [18] may be used for de scrip tion of the ir re vers ible mag ne ti za tion: M n f Vp p cirr ∼ ( / ) /2 1 2 , (3) where np is the den sity of pin ning cen ters, fp is the elementary pin ning force, and n fp p 1 2/ is the vol ume den sity of the pin ning force. Usually, the lat ter is char ac ter ized by a power-law de pend ence on Hc2 Fizika Nizkikh Temperatur, 2002, v. 28, No. 1 13 Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe 2 single crystals with a power of 1–3 for dif fer ent types of pin ning cen ters [5]. Its con tri bu tion to n may be also es ti - mated from anal y sis of the broad max i mum of the mag ne ti za tion in fields of about H = 2.4 T. The nearly same po si tion of the max ima at dif fer ent tem per a tures sug gests a match ing be tween the flux-line lat tice spac ing and the dis tance be tween the pin ning cen ters in volved [5]. The flux-line lat - tice spac ing may be es ti mated from the well known re la tion a B0 0 1 2 178≈ =( / ) /Φ Å, which can eas ily cor re spond to the dis tance be tween the stack ing faults in Nb planes aris ing be low the charge-density-wave tran si tion (TCDW = 34 K), with the ap pear ance of an in com men su rate struc - ture of ni o bium at oms, char ac ter ized by a lat tice spac ing of about 3 0a [23]. Es ti ma tion of the cor re - spond ing pin ning force from [24] gives the power n1 ≈ 2.5. Now the con tri bu tion of the cor re la tion vol ume Vc will be es ti mated. It goes as the in verse square of the tilt and shear moduli of the vor tex lat tice, or ( )Hc2 4− , which means that ex pres sion (3) com - prises a multi pli ca tive fac tor with the power n2 2= . And, fi nally, the thermofluctuational char ac ter of the tran si tion near H* means that ex pres sion (3) should be sup ple mented by a tem per a ture-de pend - ent fac tor [25]. It is de ter mined by tem per a ture de - pend ence of the depinning en ergy for ther mal fluc - tu a tions, which to a first ap prox i ma tion is lin ear in the tem per a ture [5]. Using the tem per a ture de - pend ence of the crit i cal fields, a fac tor with n3 2= is ob tained. In this way a to tal power n = 6.5 is ob tained, which agrees with that de rived from magne to - striction and mag ne ti za tion mea sure ments in the peak-effect re gime. Conclusions It was found that the max i mum on the field dependences of ir re vers ible magnetostriction in su - per con duct ing 2H-NbSe 2 cor re sponds to the field range of struc tural trans for ma tions in the vor tex ar - ray, which is re al ized af ter a first-order phase tran - si tion sce nario. The mea sured field de pend ence in the peak re gion is de scribed by a scal ing law λ irr ~ ( )* . .H 6 5 0 2± , sim i lar to that for the irrever sible mag ne ti za tion M Hirr ~ ( )* . .65 02± . It is shown that the power n = 6.5 ± 0.2 is de ter mined by the field dependences of the el e men tary pin ning force and cor re la tion vol ume and by ther mal fluc tu a tions near the up per crit i cal field. It should noted that the anal y sis pre sented is the first one of this kind, but the sim i lar dependences may be ex pected for the ir re vers ible magnetostriction in HTSCs in the high-field peak-effect re gimes. Ac cord ing to the ar - gu ments pro posed, in con ven tional su per con duc tors with a low prob a bil ity of ther mal fluc tu a tions the power of Hc2 in the high-field-peak sca ling law should be a few times lower. 14 Fizika Nizkikh Temperatur, 2002, v. 28, No. 1 V. V. Eremenko, V. A. Sirenko, Yu. A. Shabakayeva, R. Schleser, and P. L. Gammel Fig. 4. Reduced field dependence of the irreversible mag neto striction [8] and magnetization, normalized to their values at the peak. 1. H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, and K. Kitazawa, Phys. Rev. Lett. 70, 2166 (1993). 2. C. de la Fuente, A. del Moral, J. I. Arnaudas, and J. S. Abell, Physica C244, 214 (1993). 3. V. V. Eremenko, V. A. Sirenko, H. Szymczak, and A. Nabialek, Fiz. Nizk. Temp. 25, 311 (1999) [Low Temp. Phys. 25, 221 (1999)]. 4. A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5, 1174 (1957)]. 5. A. M. Campbell and J. E. Ivetts, Critical Currents in Superconductors, Taylor and Francis LTD, Lon - don (1972). 6. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994). 7. U. Wyder, P. J. E. M. van der Linden, H. P. van der Meulen, A. Gerber, V. H. M. Duyn, J. A. A. J. Perenboom, A. de Visser, and J. J. M. Franse, Physica B211, 265 (1995). 8. V. V. Eremenko, V. A. Sirenko, R. Schleser, and P. L. Gammel, Fiz. Nizk. Temp. 27, 412 (2001) [Low Temp. Phys. 27, 305 (2001)]. 9. D. Shoenberg, Magnetic oscillations in metals, Cam b ridge University (1984). 10. V. Eremenko, V. Sirenko, Yu. Shabakayeva, R. Schleser, and P. L. Gammel, Fiz. Nizk. Temp. 27, 952 (2001). 11. V. L. Ginzburg, Zh. Eks. Teor. Fiz. 23, 236 (1952). 12. V. G. Kogan and J. R. Clem, Phys. Rev. B24, 2497 (1981). 13. V. G. Kogan, L. N. Bulaevskii, P. Miranovic, and L. Dobrosavljevic-Grujic, Phys. Rev. B51, 15344 (1995). 14. T. Sambongi, J. Low Temp. Phys. 18, 139 (1975); P. Molinie, D. Jerome, and A. J. Grant, Adv. Phys. 23, 1091 (1974); M. A. Obolenskii, Kh. B. Chash - ka, V. I. Beletskii, and V. M. Gvozdikov, Fiz. Nizk. Temp. 15, 984 (1989) [Low Temp. Phys. 15, 544 (1989)]; R. E. Jones, H. R. Shanks, and D. K. Finnemore, Phys. Rev. B6, 835 (1972); K. Yamaya and T. Sambongi, J. Phys. Soc. Jpn. 32, 1150 (1972). 15. M. J. Higgins and S. Bhattacharya, Physica C257, 232 (1996). 16. A. B. Pippard, Philos. Mag. 19, 217 (1969). 17. R. Labush, Phys. Status Solidi 32, 439 (1969). 18. A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979). 19. D. R. Nelson and H. S. Seung, Phys. Rev. B39, 9153 (1989). 20. F. Lindemann, Phys. Z. (Leipzig) 11, 69 (1910). 21. Â. Ë. Ãèíçáóðã, ÔÒÒ 2, 2031 (1960). 22. V. G. Kogan, Phys. Rev. B38, 7049 (1988). 23. B. Gianbattista, A. Johnson, R. V. Coleman, B. Drake, and P. K. Hansma, Phys. Rev. B17, 2741 (1988). 24. H. C. Freyhardt, Proc. Intern. Discussion Meeting on Flux Pinning in Superconductors, Sonnen - berg/Germany (1974), p. 98. 25. L. Niel, Cryogenics 32, 975 (1992). Fizika Nizkikh Temperatur, 2002, v. 28, No. 1 15 Irreversible magnetostriction and magnetization of the superconduting 2H-NbSe 2 single crystals