Fluctuation conductivity due to the preformed local pairs
We investigated the properties of a system where the itinerant electrons coexist and interact with the preformed local pairs. Using the nonperturbative continuous unitary transformation technique we show that Andreev-type scattering between these charge carriers gives rise to the enhanced diamagneti...
Збережено в:
| Дата: | 2016 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2016
|
| Назва видання: | Физика низких температур |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/129314 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Fluctuation conductivity due to the preformed local pairs / T. Domański, M. Barańska, A.L. Solovjov // Физика низких температур. — 2016. — Т. 42, № 10. — С. 1177-1183. — Бібліогр.: 47 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-129314 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1293142025-02-09T20:14:49Z Fluctuation conductivity due to the preformed local pairs Domański, T. Barańska, M. Solovjov, A.L. К 30-летию открытия высокотемпературной сверхпроводимости We investigated the properties of a system where the itinerant electrons coexist and interact with the preformed local pairs. Using the nonperturbative continuous unitary transformation technique we show that Andreev-type scattering between these charge carriers gives rise to the enhanced diamagnetic response and is accompanied by appearance of the Drude peak inside the pseudogap regime ω ≤ 2Δpg . Both effects are caused by the short-range superconducting correlations above the transition temperature Tc. In fact, the residual diamagnetism has been detected by the torque magnetometry in the lanthanum and bismuth cuprate superconductors at temperatures up to ~1.5 T c. In this work we show how the superconducting correlations can be observed in the ac and dc conductivity. Remove selected T.D. acknowledges discussions with J. Ranninger and R. Micnas. This work is supported by the National Science Centre in Poland through the project DEC2014/13/B/ST3/04451 (TD). 2016 Article Fluctuation conductivity due to the preformed local pairs / T. Domański, M. Barańska, A.L. Solovjov // Физика низких температур. — 2016. — Т. 42, № 10. — С. 1177-1183. — Бібліогр.: 47 назв. — англ. 0132-6414 PACS: 74.25.N–, 72.10.–d, 05.10.Cc, 71.10.Li https://nasplib.isofts.kiev.ua/handle/123456789/129314 en Физика низких температур application/pdf Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
К 30-летию открытия высокотемпературной сверхпроводимости К 30-летию открытия высокотемпературной сверхпроводимости |
| spellingShingle |
К 30-летию открытия высокотемпературной сверхпроводимости К 30-летию открытия высокотемпературной сверхпроводимости Domański, T. Barańska, M. Solovjov, A.L. Fluctuation conductivity due to the preformed local pairs Физика низких температур |
| description |
We investigated the properties of a system where the itinerant electrons coexist and interact with the preformed local pairs. Using the nonperturbative continuous unitary transformation technique we show that Andreev-type scattering between these charge carriers gives rise to the enhanced diamagnetic response and is accompanied by appearance of the Drude peak inside the pseudogap regime ω ≤ 2Δpg . Both effects are caused by the short-range superconducting correlations above the transition temperature Tc. In fact, the residual diamagnetism has been detected by the torque magnetometry in the lanthanum and bismuth cuprate superconductors at temperatures up to ~1.5 T c. In this work we show how the superconducting correlations can be observed in the ac and dc conductivity.
Remove selected |
| format |
Article |
| author |
Domański, T. Barańska, M. Solovjov, A.L. |
| author_facet |
Domański, T. Barańska, M. Solovjov, A.L. |
| author_sort |
Domański, T. |
| title |
Fluctuation conductivity due to the preformed local pairs |
| title_short |
Fluctuation conductivity due to the preformed local pairs |
| title_full |
Fluctuation conductivity due to the preformed local pairs |
| title_fullStr |
Fluctuation conductivity due to the preformed local pairs |
| title_full_unstemmed |
Fluctuation conductivity due to the preformed local pairs |
| title_sort |
fluctuation conductivity due to the preformed local pairs |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| publishDate |
2016 |
| topic_facet |
К 30-летию открытия высокотемпературной сверхпроводимости |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/129314 |
| citation_txt |
Fluctuation conductivity due to the preformed local pairs / T. Domański, M. Barańska, A.L. Solovjov // Физика низких температур. — 2016. — Т. 42, № 10. — С. 1177-1183. — Бібліогр.: 47 назв. — англ. |
| series |
Физика низких температур |
| work_keys_str_mv |
AT domanskit fluctuationconductivityduetothepreformedlocalpairs AT baranskam fluctuationconductivityduetothepreformedlocalpairs AT solovjoval fluctuationconductivityduetothepreformedlocalpairs |
| first_indexed |
2025-11-30T10:09:09Z |
| last_indexed |
2025-11-30T10:09:09Z |
| _version_ |
1850209573798936576 |
| fulltext |
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 10, pp. 1177–1183
Fluctuation conductivity due to the preformed local pairs
T. Domański
Institute of Physics, M. Curie Skłodowska University, 20–031 Lublin, Poland
E-mail: doman@kft.umcs.lublin.pl
M. Barańska
Institute of Physics, Polish Academy of Sciences, 02–668 Warsaw, Poland
A.L. Solovjov
B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
47 Pr. Nauky, Kharkiv 61103, Ukraine
Received May 21, 2016, published online August 29, 2016
We investigated the properties of a system where the itinerant electrons coexist and interact with the preformed
local pairs. Using the nonperturbative continuous unitary transformation technique we show that Andreev-type
scattering between these charge carriers gives rise to the enhanced diamagnetic response and is accompanied by
appearance of the Drude peak inside the pseudogap regime ω ≤ 2∆pg. Both effects are caused by the short-range
superconducting correlations above the transition temperature Tc. In fact, the residual diamagnetism has been de-
tected by the torque magnetometry in the lanthanum and bismuth cuprate superconductors at temperatures up to
~ 1.5Tc. In this work we show how the superconducting correlations can be observed in the ac and dc conductivity.
PACS: 74.25.N– Response to electromagnetic fields;
72.10.–d Theory of electronic transport; scattering mechanisms;
05.10.Cc Renormalization group methods;
71.10.Li Excited states and pairing interactions in model systems.
Keywords: cuprate superconductors, preformed pairs, short-range correlations, Drude peak.
1. Introduction
One of important aspects concerning the role of elec-
tron correlations in the cuprate oxides refers to the pseudo-
gap phase (existing above the transition temperature cT )
and its relationship with the true superconducting state [1].
Origin of the entire pseudogap state is still a matter of con-
troversy [2], but a number of experimental data [3–12] clear-
ly indicate that the superconducting correlations emerge
gradually upon approaching cT from above. Precursor sig-
natures are seen, e.g., in a weak diamagnetic response
above the superconducting dome (reported by the torque
magnetometry [4]) or the short-scale superconducting corre-
lations (detected by the early ultrafast spectroscopy [5] and
the recent transient effects [13,14]). Physically these effects
are driven by the preformed pairs which are correlated above
cT only on some finite spatial and/or temporal scales.
Consequences of the short-range correlated preformed
pairs can be also probed by the finite-frequency optical
conductivity. Rich experimental data on the electrodyna-
mic properties [15,16] have been so far discussed in terms
of the extended Drude model, determining the frequency-
dependent relaxation time ( )τ ω . Interpretation of the pre-
cursor effects within such framework is rather complicated
because, on one hand, the depleted single-particle spectrum
suppresses the subgap optical weight, and, on the other hand,
appearance of the pair correlations gives rise to the zero-
frequency Drude peak [17], signalling a fragile superfluid
stiffness. Similar fluctuation effects have been also report-
ed for the thin samples of the strongly disordered s-wave
superconductors [18]. These physical processes have been
studied within the diagrammatic approximation for the cur-
rent-current response function, using the dressed single
particle propagators [19–21], imposing the selfconsistent
conserving scheme [22] or inventing other sophisticated
methods for the vertex corrections [23,24].
In this paper we address qualitative changes of the con-
ductivity driven by the preformed pairs, going beyond
© T. Domański, M. Barańska, and A.L. Solovjov, 2016
T. Domański, M. Barańska, and A.L. Solovjov
the usual perturbative framework. For this purpose we
adopt phenomenological scenario describing the local (pre-
formed) pairs coexisting and interacting with single (un-
paired) electrons. We treat on equal footing the boson and
fermion degrees of freedom, by means of the continuous
unitary transformation [25,26] that is reminiscent of the
numerical renormalization group techniques [27]. Such non-
perturbative scheme has been used by us [28] to determine
the response function beyond the BCS approximation [29].
Here we focus on its physical implications for the real part
of the frequency-dependent conductance due to the pre-
formed local pairs. In particular, we show that the Drude-
like feature appears in the subgap (infrared) regime and it
acquires more and more spectral weight upon approaching
cT from above. We confront this prediction with the exper-
imental data obtained for Bi2223 cuprates.
2. Preformed pairs scenario
Effects of the preformed pairs (of whatever origin) can
be studied using the boson-fermion Hamiltonian
† †
,
ˆ ˆˆ ˆ ˆ=H c c E b bσσ
σ
ξ + +∑ ∑k k q q qk
k q
( )† † †
,
,
1 ˆ ˆˆ ˆ ˆ ˆ .g b c c b c c
N ++ ↓ ↑ ↑ ↓
+ +∑ k p k pk p k p k p
k p
(1)
This model describes the itinerant electrons (fermion oper-
ators (†)ĉ σk ) coexisting with the tightly bound pairs (boson
operators (†)b̂q ), where ξk measures the energy with respect
to chemical potential µ and Eq is the energy of preformed
pairs measured with respect to 2µ . For treating the Bose–
Einstein (BE) condensed pairs (i.e., =q 0 mode) one can
simplify (1) to the standard BCS Hamiltonian with
=
,
ˆ
=
b
g
N −∆ − q 0
k k k .
It is the purpose of our study here to address the role of
finite momentum pairs b̂ ≠q 0.
Specific argumentation in favor for the boson-fermion
scenario (1) has been discussed by various groups [30–37].
This Hamiltonian can be derived from the plaquettized
Hubbard model using the contractor method [33]. Such mo-
del has been shown [34] to capture the Anderson’s idea of
the resonating valence bond picture. The Hamiltonian (1) has
been also deduced on phenomenological grounds [35–37]
as realistic prototype for the correlated electrons (holes) in
CuO2 planes. It also accounts for the resonant Feshbach
interaction operating in the ultracold fermion atoms such
as 6Li or 40K [38–40].
3. Single particle vs collective features
For studying influence of the preformed pairs on the
single-particle electron spectrum (and vice versa) we con-
struct the unitary transformation ˆ ( )U l , diagonalizing the Ha-
miltonian †( ) = ( ) ( )H l U l HU l in a continuous manner.
The transformed Hamiltonian ( )H l evolves with respect to
a formal parameter l via the flow equation [25,26]
ˆ ( ) ˆˆ= [ ( ), ( )]dH l l H l
dl
η (2)
with the generating operator
1( )ˆ ( ) ( )dU ll U l
dl
−η ≡ .
Hamiltonians 0 1
ˆ ˆ ˆ( ) = ( ) ( )H l H l H l+ (where 0
ˆ ( )H l describes
the diagonal part and 1
ˆ ( )H l is the off-diagonal term) can
be asymptotically diagonalized
1
ˆ ( ) = 0lim
l
H l
→∞
(3)
applying the following generating operator [25]
0 1
ˆ ˆˆ ( ) = ( ), ( ) .l H l H l η (4)
During the unitary transformation all the model parameters
are continuously renormalized to their asymptotic (fixed
point) values [26].
Adopting this algorithm (4) we have constructed [41,42]
the continuous unitary transformation for the model (1),
choosing
† †
0
,
ˆ ˆˆ ˆ ˆ( ) = ( ) ( )H l l c c E l b bσσ
σ
ξ +∑ ∑k k q q qk
k q
and 1 0
ˆ ˆ ˆ( ) = ( ) ( )H l H l H l− . The generating operator (4) is
then given by
( )† †
,
,
1 ˆˆ ˆ ˆ( ) = ( ) h.c. ,l l b c c
N + ↑ ↓
η α −∑ k p k p k p
k p
(5)
where , ,( ) = ( )[ ( ) ( ) ( )]l g l l l E l+α ξ + ξ −k p k p k p k p . Substitut-
ing (5) to the flow equation (1) one obtains [41]
2
,ln ( ) = ( ) ( ) ( ) .d g l l l E l
dl + − ξ + ξ − k p k p k p (6)
This Eq. (6) implies an exponential decay of the boson-fer-
mion coupling , ( )g lk p in the limit l →∞ . Simultaneously,
the fermion and boson energies are renormalized according
to the flow equations [41]
, ,
2( ) = ( ) ( ) Bd l l g l n
dl N − −ξ α∑k k q k k q k q
q
, (7)
, , , ,
2( ) = ( ) ( ) 1 ,F Fd E l l g l n n
dl N − − − ↑ ↓
− α − − ∑q k k q k q k k q k
k
(8)
where ,
Fn σk ( Bnq ) denotes the fermion (boson) occupancy.
We have selfconsistently solved the Eqs. (6)–(8) for the fix-
ed charge concentration
1178 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 10
Fluctuation conductivity due to the preformed local pairs
tot ,
,
= 2F Bn n nσ
σ
+∑ ∑k q
k q
.
The (asymptotic) dispersions ( )liml l→∞ξ ≡ ξk k
and
( )limlE E l→∞≡q q revealed that [41,42]:
a) the fermionic spectrum is gaped around µ with the Bo-
golubov-type quasiparticle branches existing below and
above cT (see Fig. 1),
b) the low-energy bosonic spectrum is characterized
above cT by the parabolic function 2( ) / 2 Bmq with tem-
perature-dependent effective mass Bm (Fig. 2) which
evolves at temperatures < cT T into the sound-wave Gold-
stone dispersion | |sv q .
We would like to emphasize that the Bogolubov quasi-
particle branches surviving above cT have been later on
confirmed experimentally by the angle resolved photo-
emission spectroscopy for the bismuth [9] and lanthanum
compounds [10]. Similar effect has been also reported by
the k-resolved radiofrequency spectroscopy for the ultra-
cold potassium atoms [44]. This typical superconducting
feature has been observed in the normal state even in ab-
sence of the long-range pair coherence.
The high- cT cuprate oxides are nearly two-dimensional
materials where the superconductivity is driven in CuO2
planes. For this reason we can interpret the temperature
dependent mass Bm of the preformed pairs as a quantity
related with the residual Meissner effect in the reduced
dimensions [46]. This aspect has been recently emphasized
by the ETH group [47] within the quantum Monte Carlo
studies of the present model (1). Following the same rou-
tine we show in Fig. 3 the diamagnetic magnetization
( )dM T obtained from the continuous unitary transfor-
mation for the two-dimensional case with tot = 2n . We can
notice that the increasing mobility of the preformed pairs
substantially enhances the magnetization. This behavior
can be independently explained by the direct calculation of
the current-current response function (discussed in the next
section).
4. Effect of the preformed pairs on the response
function
The residual Meissner effect and the conductivity can
be obtained from the response function , ( , )α βΠ τ ≡q
, ,
ˆ ˆ ˆ( )T j jτ α − β≡ − 〈 τ 〉q q (where ,α β denote the Cartesian , ,x y z
coordinates) with the current operator defined as
†
,,
= ,2
ˆ ˆ ˆ= c c + σσ+ σ ↑ ↓
∑ ∑q q k qkkk
j v (9)
and velocity 1−= ∇ εk k kv . Within the continuous unitary
transformation it is convenient to compute the current-cur-
rent response function , ( , )iα βΠ νq using the statistical av-
erages with respect to the diagonalized Hamiltonian ˆ ( )H ∞ .
This, however, requires that the current operator (9) has to
be analyzed in the same transformation routine as the Ha-
miltonian. Some technical details concerning derivation of
, ( , )iα βΠ νq are outlined in the Appendix. In the asymptotic
Fig. 2. (Color online) Enhancement of the preformed pairs’ mo-
bility 1 / Bm with the decreasing temperature obtained from
selfconsistent solution of the flow equations (7), (8) for the con-
stant charge concentration tot = 2n . The bandwidth D is used as
a unit for energies. Inset shows the bosonic dispersion Eq for
a few representative temperatures.
Fig. 3. (Color online) Residual diamagnetism induced above cT
by the preformed electron pairs. Magnetization has been comput-
ed using ( ) 1 / ( )B
dM T m T∝ suitable for the two-dimensional
hard-core boson gas [46] in analogy to quantum Monte Carlo
(QMC) studies [47] of the present model.
Fig. 1. (Color online) Schematic view of the gaped fermion spec-
trum with the Bogolubov-type quasiparticle branches surviving
above cT . Results are obtained for the boson-fermion model (1)
using the procedure discussed in Ref. 43.
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 10 1179
T. Domański, M. Barańska, and A.L. Solovjov
limit l →∞ we obtain two contributions to the response
function, from: (a) the BE condensed pairs and (b) the fi-
nite momentum preformed pairs (see Fig. 1 in Ref. 28).
Explicit form of the response function is given by [28]
___________________________________________________
, ,, ,
2 2
1 1( , ) = ( ) ( )FD FDi f f
i iα β +
+ α + β + +
Π ν ξ − ξ − + ν + ξ −ξ ν − ξ + ξ
∑ q q k q k q kk k k q k k q kk
q
v v
, ,
1 ( ) ( )1 ( ) ( )
( )
FD FD
BE BE
f f
f E f
i EN
′+
′ ′ ′− +
′ ′+ −′
− ξ − ξ
+ − ξ + ξ − ν − ξ + ξ −
∑ k q k
k k q k k k q k
k q k k kk
1 ( ) ( )
( ) ( ) ,
( )
FD FD
BE BE
f f
f E f
i E
′+
′ ′− +
′ ′+ −
− ξ − ξ − − ξ + ξ ν+ ξ + ξ −
k q k
k k k q k
k q k k k
(10)
______________________________________________
with the Fermi–Dirac [ ] 1( ) = exp ( / ) 1FD Bf k T −ω ω + and
Bose–Einstein [ ] 1( ) = exp ( / ) 1BE Bf k T −ω ω − functions,
respectively. The coefficients
, , , , ,+ − − −≡ + +k q k q k q q k q k q
, , , ,− − + −+ +k q k q k q k q q , (11)
( ), , , ( ), , ( ),′ ′ ′+ − + − + − + −≡ − ×k k q k q k q q k q k q q
( ), , , ,′ ′− −× −k k q k k q (12)
denote the asymptotic values of parameters introduced in
the l-dependent current operator (A.1). This response func-
tion (10) generalizes the standard BCS result [29,45] tak-
ing into account the finite momentum preformed pairs
Bn ≠q 0. They enter the response function through the terms
proportional to , ,′k k q and their influence leads to ap-
pearance of the Drude peak in the subgap optical conduc-
tivity (Fig. 4).
Let us remark, that in the superconducting state the
electrodynamic response is dominated by the BE-condens-
ed ( =q 0) pairs. In such situation the coefficients (11), (12)
simplify to the usual BCS coherence factors
2
, = ( )u u+ ++k q k q k k q kv v and , , =
1 ( ) =BEf E
Nk k q q 0
2= ( )q qu u+ +−k k k kv v [28]. Since the preformed pairs are
concentrated in the low-momentum (long-wavelength)
states (see Fig. 4), therefore some of these BCS features
can be preserved also in the pseudogap state above cT .
5. Fluctuation conductivity above Tc
We now analyze how the preformed pairs show up in
the ac (dynamic) conductivity defined by [45]
, ,
1( , ) = Im ( , ) .α β α β σ ω − Π ω ω
q q (13)
For specific considerations we focus on two-dimensional
lattice version of the boson-fermion model (1), character-
ized by the tight-binding dispersion = 2 [cos ( )xt k aξ − +k
cos ( )]yk a+ −µ . In this expression t is the hopping inte-
gral, and the bandwidth D ≡ 8t is used as a unit for the en-
ergies. We assume that (initially) the preformed pairs are
dispersionless (localized) = 2BE ∆ − µq but they acquire
some itineracy due to boson-fermion coupling , .gk p We
have constructed the numerical codes using the following
set of parameters = 0B∆ , , = 0.08g D′k k . We have deter-
mined the chemical potential ( )Tµ keeping the fixed
charge concentration tot = 2n .
We solved the differential equations (6)–(8) along with
the flow equations (A.2), (A.5) for the parametrized cur-
rent operator (A.1). We have covered the Brillouin zone by
a mesh of 500×500 equidistant points and solved the cou-
pled differential equations using the Runge–Kutta algo-
rithm. The flow parameter l l l→ +δ has been changed
with the flexible increment lδ adjusted in order to control
the ongoing renormalizations. In the initial stage of trans-
formation we used 2= 0.0001l D−δ , and later on we in-
creased its value as discussed by us in Refs. 37, 42.
To avoid summations of the sharp delta functions we
have imposed a small imaginary part in the analytical con-
tinuation 1
, ,( , ) ( , )i i −
α β α βΠ ν →Π ω+ τq q . Roughly speak-
ing τ can be regarded as some phenomenological scatter-
ing time, which we assume to be constant for the discussed
Fig. 4. (Color online) Gradual accumulation of the preformed
pairs at low momenta, leading to appearance of the Drude peak in
ac conductivity.
1180 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 10
Fluctuation conductivity due to the preformed local pairs
temperature regime. In the normal state the dynamic con-
ductivity is characterized by the Drude model behavior
2 2( ) = / (1 )Nσ ω σ +ω τ with the dc conductivity
2= / F
N ne mσ τ . It obeys the important f-sum rule
2( ) = / Fd ne m
∞
−∞
ωσ ω π∫ .
Figure 5 shows the ac conductivity obtained for the
dirty limit
,
1( ) ( , )x xN
σ ω ≡ σ ω∑
q
q .
Upon lowering temperature we observe that: (i) depletion
of the single-particle (fermion) states near the Fermi level
induces [through the terms (11)] the optical gap over ener-
gy regime 2 ;2pg pgω∈〈− ∆ ∆ 〉, (ii) accumulation of the
low-momentum preformed pairs (bosons) contributes [via
the terms (12)] more and more spectral weight to the
Drude peak. Transfer of this spectral weight goes hand in
hand with a gradual emergence of the diamagnetism
(Fig. 3) in very much the same way as it does in the sym-
metry-broken superconducting state [29].
The ongoing transfer of the optical weight has the indi-
rect consequence on temperature variation of the dc con-
ductivity (0)σ . We observe that dc conductivity is substan-
tially enhanced with decreasing temperature in the
pseudogap regime. This “fluctuation enhanced conductivi-
ty” is well known experimentally. As an example we show
in Fig. 6 the temperature-dependent resistivity = 1/ (0)ρ σ
of the bismuth cuprate superconductors. Subtracting the
normal state value nρ we can notice that the reduced resis-
tivity (enhanced conductivity) starts well above the transi-
tion temperature, already at * 2.2 cT T . As concerns the
optical gap the ac conductivity this effect has been reported
for various families of the cuprate superconductors [16] in
the temperature and doping regime corresponding to the
residual Meissner effect [17]. Similar fluctuation effects
have been observed also in the strongly disordered thin
classical superconductors [18].
6. Summary
We have studied influence of the preformed local pairs
on the diamagnetic response and the conductivity in the
pseudogap region above cT . For specific considerations we
have used the boson-fermion model, describing the itiner-
ant electrons interacting via the Andreev-type scattering
with the preformed local pairs. We have shown that a gradu-
al suppression of the single particle states near the Fermi
energy is accompanied by an increasing mobility of the
preformed pairs (Fig. 2). The latter effect leads in turn to
some fragile diamagnetic response of the system (Fig. 3).
We have further supported this result by analysis of the
preformed pairs contribution to the current-current re-
sponse function, that has been determined within the flow
equation procedure beyond the perturbative scheme.
We have also investigated the dynamic conductivity
and found that the suppressed fermionic spectrum induces
the optical gap in the infrared regime | | 2 pgω ≤ ∆ while the
accumulation of the low-momentum preformed pairs gives
rise to the Drude-like peak. Upon lowering the temperature
there is more and more spectral weight transferred to the
Drude peak at expense of deepening the optical gap. This
processes driven by the low-momentum preformed pairs
does amplify (via f-sum rule) the dc conductivity. Finally,
we have confronted such fluctuation conductivity with the
experimental data obtained for the Bi2223 cuprate super-
conductors.
Fig. 5. (Color online) The dynamic conductivity ( )σ ω revealing
the Drude peak caused by the low-momentum preformed pairs
and the optical gap | | pgω ≤ ∆ due to the depleted single particle
states (i.e., pseudogap). Energy ω is expressed in units of
the pseudogap pg∆ at low temperature = 0.02T D .
Fig. 6. (Color online) Temperature dependence of the dc resistivi-
ty of Bi2223 cuprate superconductors. Notice that the fluctuation
conductivity occurs below * 2.2 cT T≈ .
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 10 1181
T. Domański, M. Barańska, and A.L. Solovjov
Acknowledgments
T.D. acknowledges discussions with J. Ranninger and
R. Micnas. This work is supported by the National Science
Centre in Poland through the project DEC-
2014/13/B/ST3/04451 (TD).
Appendix A: Transformation of the current operator
We briefly outline here the continuous transformation
for the current operator (9). We individually study both
spin contributions
†
,,
2
ˆ ˆ ˆ= c cσ
+ σσ+
∑q q k qkk k
j v
because their evolution with respect to l is slightly differ-
ent. From the initial ( = 0l ) derivative
ˆ ˆˆ( ) = [ ( ), ( )]d l l l
dl
σ σηq qj j
we conclude the following (l-dependent) parametrization
†
, ,,
2
ˆ ˆ ˆ( ) = ( )l l c c↑
+ ↑↑+
+
∑q q k q k qkkk
j v
† † †
, , ,, ( ), , ,
ˆˆ ˆ ˆ ˆ( ) ( )l c c l b c c+− ↓ − + ↓ ↑ − ↓
+ + +∑k q k p q k pk k q k p q
p
†
, , , ,
ˆ ˆ ˆ( ) .F l b c c+ ↓ + ↑
+
∑ k p q k p p k q
p
(A.1)
The other spin contribution ˆ ( )l↓
qj has the coefficient
, , ( )lk p q interchanged with , , ( )l− k p q and vice versa. The
new parameters are subject to the boundary conditions
, (0) = 1k q and , , , , ,(0) (0) = (0) = 0=k q k p q k p q . Let
us remark here, that restricting only to the BE condensed
pairs (†) (†)
,
ˆ ˆ=b b −+ δp kk p 0 the constraint (A.1) exactly repro-
duces the standard BCS solution [28]. For arbitrary case
we can derive from the operator equation
ˆ ˆˆ( ) / = [ ( ), ( )]d l dl l lσ σηq qj j the following set of flow equa-
tions
( ),
, , , ,
( )
= ( ) ( ) Fd l
l l n n
dl + − − σ +
α + +∑k q
k q p q k p q p q k p
p
( ), , , ,( ) ( ) Fl l n nσ +
+ α + k p k p q p k p
, (A.2)
( ),
, , , ,
( )
= ( ) ( ) Fd l
l l n n
dl − − σ +
− α + +∑k q
k p p k q p k p
p
( ), , , ,( ) ( ) Fl l n n+ − − − − σ +
+α + k q p q p k q p q k p
, (A.3)
, ,
, , , ,
( )
= ( ) ( ) ( ) ( ),
d l
l l l l
dl + − −−α +αk p q
k q p q k q k p p q
(A.4)
, ,
, , , ,
( )
= ( ) ( ) ( ) ( ).
d l
l l l l
dl + − −−α +αk p q
k p k q k q p q p q
(A.5)
These complex equations can be either solved numeri-
cally or (with some compromise) analytically. The lowest
order estimation of the coefficients − is feasible
for instance if we neglect renormalizations of the fermion
and boson energies on the right hand side of the
Eqs. (A.2)–(A.5). Substituting the exponential scaling
2( )
, ,( ) e
E l
g l g
− ξ +ξ − +k p k p
k p k p
these flow equations (A.2)–(A.5) can be solved iteratively,
starting from the initial (boundary) conditions. Thus esti-
mated coefficients (A.4), (A.5) are given by [28]
( ) 2
,
, 2
| |11
2 ( )
F Bn n g
E
+
+
+
− + ξ + ξ −
∑
p k p k p
k q
p k p k p
( ) 2
,
2
| |
( )
F Bn n g
E
− + + −
+ − +
+
+ ξ + ξ −
p q k p k q p q
k q p q k p
, (A.6)
,
, , ,
g
E
+ −
+ − +
−
ξ + ξ −
k q p q
k p q
k q p q k p
(A.7)
,
, ,
g
E +
−
ξ + ξ −
k p
k p q
k p k p
, (A.8)
, , ,g g + − ×∑k q k p k q p q
p
,
2 2
, , , ,
1F Bn n X
X X X X
+
+ − + −
+
× − +
+
p k p k p
k q p q k p k p k q p q
,
2 2
, , , ,
1F Bn n X
X X X X
− + + −
+ − + −
+
−
+
p q k p k q p q
k p k q p q k p k q p q
, (A.9)
where ,X E +≡ ξ + ξ −k p k p k p .
1. K. Behnia and H. Aubin, Rep. Prog. Phys. 79, 046502 (2016).
2. V. Mishra, U. Chatterjee, J.C. Campuzano, and M.R.
Norman, Nature Phys. 10, 357 (2014).
3. T. Kirzner and G. Koren, Sci. Rep. 4, 6244 (2014).
4. L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G.D. Gu, and
N.P. Ong, Phys. Rev. B 81, 054510 (2010).
5. J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic,
Nature 398, 221 (1999).
6. Y. Wang, L. Li, and N.P. Ong, Phys. Rev. B 73, 024510
(2006); Z.A. Xu, N.P. Ong, Y. Wang, T. Takeshita, and S.
Uchida, Nature 406, 486 (2000).
7. T. Kirzhner and G. Koren, Sci. Rep. 4, 6244 (2014); N. Bergeal,
J. Lesueur, M. Aprili, G. Faini, J.P. Contour, and B. Leridon,
Nature Phys. 4, 608 (2008).
1182 Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 10
http://dx.doi.org/10.1088/0034-4885/79/4/046502
http://dx.doi.org/10.1038/nphys2926
http://dx.doi.org/10.1038/srep06244
http://dx.doi.org/10.1103/PhysRevB.81.054510
http://dx.doi.org/10.1038/18402
http://dx.doi.org/10.1103/PhysRevB.73.024510
http://dx.doi.org/10.1038/35020016
http://dx.doi.org/10.1038/srep06244;%2010.1038/nphys1017
Fluctuation conductivity due to the preformed local pairs
8. O. Yuli, I. Asulin, Y. Kalchaim, G. Koren, and O. Millo,
Phys. Rev. Lett. 103, 197003 (2009).
9. A. Kanigel, U. Chatterjee, M. Randeria, M.R. Norman,
G. Koren, K. Kadowaki, and J. Campuzano, Phys. Rev. Lett.
101, 137002 (2008).
10. M. Shi, A. Bendounan, E. Razzoli, S. Rosenkranz, M.R.
Norman, J.C. Campuzano, J. Chang, M. Mansson, Y. Sassa,
T. Claesson, O. Tjernberg, L. Patthey, N. Momono, M. Oda,
M. Ido, S. Guerrero, C. Mudry, and J. Mesot, Eur. Phys.
Lett. 88, 27008 (2009).
11. J. Lee, K. Fujita, A.R. Schmit, C.K. Kim, H. Eisaki, S. Uchida,
and J.C. Davis, Science 325, 1099 (2009).
12. Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita,
J.W. Alldredge, K. McElroy, Jinho Lee, H. Eisaki, S. Uchida,
D.-H. Lee, and J.C. Davis, Nature 454, 1072 (2008).
13. D. Fausti, R.I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.C.
Hoffmann, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri,
Science 331, 189 (2011); S. Kaiser, C. R. Hunt, D. Nicoletti,
W. Hu, I. Gierz, H. Y. Liu, M. Le Tacon, T. Loew, D. Haug,
B. Keimer, and A. Cavalleri, Phys. Rev. B 89, 184516 (2014).
14. F. Cilento, S. Dal Conte, G. Coslovich, S. Peli, N. Nembrini,
S. Mor, F. Banfi, G. Ferrini, H. Eisaki, M. K. Chan, C.J.
Dorow, M.J. Veit, M. Greven, D. van der Marel, R. Comin,
A. Damascelli, L. Rettig, U. Bovensiepen, M. Capone,
C. Giannetti, and F. Parmigiani, Nat. Commun. 5, 4353 (2014).
15. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
16. D.N. Basov, R.A. Averitt, D. van der Marel, M. Dressel, and
K. Haule, Rev. Mod. Phys. 83, 471 (2011); D.N. Basov and
T. Timusk, Rev. Mod. Phys. 77, 721 (2005).
17. A. Dubroka, M. Rössle, K.W. Kim, V.K. Malik, D. Munzar,
D.N. Basov, A.A. Schafgans, S.J. Moon, C.T. Lin, D. Haug,
V. Hinkov, B. Keimer, Th. Wolf, J.G. Storey, J.L. Tallon,
and C. Bernhard, Phys. Rev. Lett. 106, 047006 (2011).
18. M. Mondal, Anand Kamlapure, Somesh Chandra Ganguli,
John Jesudasan, Vivas Bagwe, Lara Benfatto, and Pratap
Raychaudhuria, Sci. Rep. 3, 1357 (2013).
19. E. Illes, E.J. Nicol, and J.P. Carbotte, Phys. Rev. B 79,
100505(R) (2009); J.P. Carbotte, K.A.G. Fisher, J.P.F. LeBlanc,
and E.J. Nicol, Phys. Rev. B 81, 014522 (2010); T.S. DeNobrega
and J.P. Carbotte, Phys. Rev. B 83, 094504 (2011).
20. N. Lin, E. Gull, and A.J. Millis, Phys. Rev. B 82, 045104 (2010).
21. A. Levchenko, T. Micklitz, M.R. Norman, and I. Paul, Phys.
Rev. B 82, 060502(R) (2010).
22. D. Wulin, B.M. Fregoso, H. Guo, C.-C. Chien, and K. Levin,
Phys. Rev. B 84, 140509(R) (2011); H. Guo, C.-C. Chien,
and K. Levin, Phys. Rev. Lett. 105, 120401 (2010).
23. L. Fanfarillo, L. Benfatto, and C. Castellani, Phys. Rev. B 85,
024507 (2012).
24. D.L. Maslov and A.V. Chubukov, Phys. Rev. B 86, 155137
(2012).
25. F. Wegner, Ann. Physik (Leipzig) 506, 77 (1994); S.D.
Głazek and K.G. Wilson, Phys. Rev. D 49, 4214 (1994).
26. S. Kehrein, The Flow Equation Approach to Many-Particle
Systems, Springer Tracts in Modern Physics 215, Berlin (2006).
27. W. Metzner, M. Salmhofer, C. Honnerkamp, V. Meden, and
K. Schönhammer, Rev. Mod. Phys. 84, 299 (2012); R. Bulla,
T.A. Costi, and Th. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
28. M. Zapalska and T. Domański, Phys. Rev. B 84, 174520 (2011).
29. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Part-
icle Systems, McGraw-Hill Book Company, New York (1971).
30. The original idea has been proposed by J. Ranninger and S.
Robaszkiewicz, Physica B 135, 468 (1985). For a survey see the
review paper R. Micnas, J. Ranninger, and S. Robaszkiewicz,
Rev. Mod. Phys. 62, 113 (1990).
31. R. Friedberg and T.D. Lee, Phys. Rev. B 40, 6745 (1989).
32. R. Micnas, Phys. Rev. B 76, 184507 (2007).
33. E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 (2002); A.
Mihlin and A. Auerbach, Phys. Rev. B 80, 134521 (2009).
34. K. LeHur and T.M. Rice, Ann. Phys. (NY) 324, 1452 (2009).
35. V.B. Geshkenbein, L.B. Ioffe and A.I. Larkin, Phys. Rev. B
55, 3173 (1997).
36. T. Senthil and P.A. Lee, Phys. Rev. Lett. 103, 076402
(2009); Phys. Rev. B 79, 245116 (2009).
37. J. Ranninger and T. Domański, Phys. Rev. B 81, 014514 (2010).
38. M. Holland, S.J.J.M.F. Kokkelmans, M.L. Chiofalo, and R.
Walser, Phys. Rev. Lett. 87, 120406 (2001).
39. Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402 (2002).
40. Q. Chen, J. Stajic, S. Tan and K. Levin, Phys. Rep. 412, 1
(2005).
41. T. Domański and J. Ranninger, Phys. Rev. B 63, 134505
(2001).
42. T. Domański and J. Ranninger, Phys. Rev. Lett. 91, 255301
(2003); Phys. Rev. B 70, 184503 (2004).
43. T. Domański, Phys. Rev. A 84, 023634 (2011).
44. J.P. Gaebler, J.T. Stewart, T.E. Drake, D.S. Jin, A. Perali,
P. Pieri, and G.C. Strinati, Nature Phys. 6, 569 (2010).
45. G.D. Mahan, Many-Particle Physics, Plenum Press, New-
York (1990).
46. R.M. May, Phys. Rev. 115, 254 (1959).
47. K.-Y. Yang, E. Kozik, X. Wang, and M. Troyer, Phys. Rev.
B 83, 214516 (2011).
Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, v. 42, No. 10 1183
http://dx.doi.org/10.1103/PhysRevB.82.140502
http://dx.doi.org/10.1103/PhysRevLett.101.137002
http://dx.doi.org/10.1209/0295-5075/88/27008
http://dx.doi.org/10.1209/0295-5075/88/27008
http://dx.doi.org/10.1126/science.1176369
http://dx.doi.org/10.1038/nature07243
http://dx.doi.org/10.1126/science.1197294
http://dx.doi.org/10.1103/PhysRevB.89.184516
http://dx.doi.org/10.1038/ncomms5353
http://dx.doi.org/10.1088/0034-4885/62/1/002
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/PhysRevB.73.024510
http://dx.doi.org/10.1038/srep01357
http://dx.doi.org/10.1103/PhysRevB.79.100505
http://dx.doi.org/10.1103/PhysRevB.81.014522
http://dx.doi.org/10.1103/PhysRevB.83.094504
http://dx.doi.org/10.1103/PhysRevB.82.045104
http://dx.doi.org/10.1103/PhysRevB.73.024510
http://dx.doi.org/10.1103/PhysRevB.73.024510
http://dx.doi.org/10.1103/PhysRevB.84.140509
http://dx.doi.org/10.1103/PhysRevLett.105.120401
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/PhysRevB.84.174520
http://dx.doi.org/10.1103/PhysRevB.40.6745
http://dx.doi.org/10.1103/PhysRevB.76.184507
http://dx.doi.org/10.1103/PhysRevB.65.104508
http://dx.doi.org/10.1103/PhysRevB.80.134521
http://dx.doi.org/10.1016/j.aop.2009.02.004
http://dx.doi.org/10.1103/PhysRevB.55.3173
http://dx.doi.org/10.1103/PhysRevLett.103.076402
http://dx.doi.org/10.1103/PhysRevB.79.245116
http://dx.doi.org/10.1103/PhysRevB.81.014514
http://dx.doi.org/10.1103/PhysRevLett.87.120406
http://dx.doi.org/10.1103/PhysRevLett.89.130402
http://dx.doi.org/10.1016/j.physrep.2005.02.005
http://dx.doi.org/10.1103/PhysRevB.63.134505
http://dx.doi.org/10.1103/PhysRevLett.91.255301
http://dx.doi.org/10.1103/PhysRevB.70.184503
http://dx.doi.org/10.1103/PhysRevA.84.023634
http://dx.doi.org/10.1038/nphys1709
http://dx.doi.org/10.1103/PhysRev.115.254
http://dx.doi.org/10.1103/PhysRevB.83.214516
http://dx.doi.org/10.1103/PhysRevB.83.214516
1. Introduction
2. Preformed pairs scenario
3. Single particle vs collective features
4. Effect of the preformed pairs on the response function
5. Fluctuation conductivity above Tc
6. Summary
Acknowledgments
Appendix A: Transformation of the current operator
|