Effect of deuterium implantation dose on properties of CrN coatings
The methods of X-ray diffraction analysis, atomic-force microscopy, nanoindentation and thermodesorption spectroscopy have been applied to investigate the effect of a dose (from 5∙10¹⁶ to 1.5∙10¹⁸ D/сm²) of implanted deuterium with energy of 24 keV on the structure, surface morphology and mechanical...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/136040 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Effect of deuterium implantation dose on properties of CrN coatings / A.S. Kuprin, V.A. Belous, O.M. Morozov, V.D. Ovcharenko, S.N. Dub, G.N. Tolmachova, E.N. Reshetnyak, V.I. Zhurba, V.O. Progolaieva // Вопросы атомной науки и техники. — 2017. — № 2. — С. 184-189. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-136040 |
|---|---|
| record_format |
dspace |
| spelling |
Kuprin, A.S. Belous, V.A. Morozov, O.M. Ovcharenko, V.D. Dub, S.N. Tolmachova, G.N. Reshetnyak, E.N. Zhurba, V.I. Progolaieva, V.O. 2018-06-15T18:36:19Z 2018-06-15T18:36:19Z 2017 Effect of deuterium implantation dose on properties of CrN coatings / A.S. Kuprin, V.A. Belous, O.M. Morozov, V.D. Ovcharenko, S.N. Dub, G.N. Tolmachova, E.N. Reshetnyak, V.I. Zhurba, V.O. Progolaieva // Вопросы атомной науки и техники. — 2017. — № 2. — С. 184-189. — Бібліогр.: 29 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/136040 669.296.004.0772 The methods of X-ray diffraction analysis, atomic-force microscopy, nanoindentation and thermodesorption spectroscopy have been applied to investigate the effect of a dose (from 5∙10¹⁶ to 1.5∙10¹⁸ D/сm²) of implanted deuterium with energy of 24 keV on the structure, surface morphology and mechanical properties of vacuum-arc CrN coatings. Deuterium ion implantation in the range of doses from 5∙10¹⁶ to 1.5∙10¹⁷ D/сm² decreases by 10…15% the nanohardness and elastic modulus of coatings. Under exposition to doses ≥ 1∙10¹⁸ D/сm² the coating nanohardness sharply decreases because of blisters being formed and occupying about 30% of the CrN coating surface. Deuterium implantation did not lead to formation of new phases in the CrN coating. Методами рентгеноструктурного аналізу, атомно-силової мікроскопії, наноіндентування і термодесорбційної спектроскопії досліджено вплив дози (5∙10¹⁶…1.5∙10¹⁸ D/см²) імплантованого дейтерію з енергією 24 кеВ на структуру, морфологію поверхні та механічні властивості вакуумно-дугових покриттів CrN. Імплантований дейтерій в інтервалі доз 5∙10¹⁶…1.5∙10¹⁷ D/см² призводить до зменшення на 10…15% нанотвердості і модуля пружності покриттів. Опромінення дозами ≥ 1∙10¹⁸ D/см² викликає різке зниження нанотвердості покриттів через формування блістерів, які займають близько 30% поверхні покриття CrN. Імплантація дейтерію не призводить до утворення нових фаз у покритті CrN. Методами рентгеноструктурного анализа, атомно-силовой микроскопии, наноиндентирования и термодесорбционной спектроскопии исследовано влияния дозы (5∙10¹⁶…1,5∙10¹⁸ D/см²) имплантированного дейтерия с энергией 24 кэВ на структуру, морфологию поверхности и механические свойства вакуумно-дуговых покрытий CrN. Имплантированный дейтерий в интервале доз 5∙10¹⁶…5∙10¹⁷ D/см² приводит к уменьшению на 10…15% нанотвердости и модуля упругости покрытий. Облучение дозами ≥ 1∙10¹⁸ D/см² вызывает резкое снижение нанотвердости покрытий из-за формирования блистеров, которые занимают около 30% поверхности покрытия CrN. Имплантация дейтерия не приводит к образованию новых фаз в покрытии CrN. We are also thankful to Dr. P.М. Lytvyn for carrying out atomic force microscopy tests at the V.E. Lashkarev Institute of Semiconductor Physic, NAS of Ukraine, Kiev. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Физика радиационных и ионно-плазменных технологий Effect of deuterium implantation dose on properties of CrN coatings Вплив дози імплантованого дейтерію на властивості покриттів CrN Влияние дозы имплантированного дейтерия на свойства покрытий CrN Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Effect of deuterium implantation dose on properties of CrN coatings |
| spellingShingle |
Effect of deuterium implantation dose on properties of CrN coatings Kuprin, A.S. Belous, V.A. Morozov, O.M. Ovcharenko, V.D. Dub, S.N. Tolmachova, G.N. Reshetnyak, E.N. Zhurba, V.I. Progolaieva, V.O. Физика радиационных и ионно-плазменных технологий |
| title_short |
Effect of deuterium implantation dose on properties of CrN coatings |
| title_full |
Effect of deuterium implantation dose on properties of CrN coatings |
| title_fullStr |
Effect of deuterium implantation dose on properties of CrN coatings |
| title_full_unstemmed |
Effect of deuterium implantation dose on properties of CrN coatings |
| title_sort |
effect of deuterium implantation dose on properties of crn coatings |
| author |
Kuprin, A.S. Belous, V.A. Morozov, O.M. Ovcharenko, V.D. Dub, S.N. Tolmachova, G.N. Reshetnyak, E.N. Zhurba, V.I. Progolaieva, V.O. |
| author_facet |
Kuprin, A.S. Belous, V.A. Morozov, O.M. Ovcharenko, V.D. Dub, S.N. Tolmachova, G.N. Reshetnyak, E.N. Zhurba, V.I. Progolaieva, V.O. |
| topic |
Физика радиационных и ионно-плазменных технологий |
| topic_facet |
Физика радиационных и ионно-плазменных технологий |
| publishDate |
2017 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Вплив дози імплантованого дейтерію на властивості покриттів CrN Влияние дозы имплантированного дейтерия на свойства покрытий CrN |
| description |
The methods of X-ray diffraction analysis, atomic-force microscopy, nanoindentation and thermodesorption spectroscopy have been applied to investigate the effect of a dose (from 5∙10¹⁶ to 1.5∙10¹⁸ D/сm²) of implanted deuterium with energy of 24 keV on the structure, surface morphology and mechanical properties of vacuum-arc CrN coatings. Deuterium ion implantation in the range of doses from 5∙10¹⁶ to 1.5∙10¹⁷ D/сm² decreases by 10…15% the nanohardness and elastic modulus of coatings. Under exposition to doses ≥ 1∙10¹⁸ D/сm² the coating nanohardness sharply decreases because of blisters being formed and occupying about 30% of the CrN coating surface. Deuterium implantation did not lead to formation of new phases in the CrN coating.
Методами рентгеноструктурного аналізу, атомно-силової мікроскопії, наноіндентування і термодесорбційної спектроскопії досліджено вплив дози (5∙10¹⁶…1.5∙10¹⁸ D/см²) імплантованого дейтерію з енергією 24 кеВ на структуру, морфологію поверхні та механічні властивості вакуумно-дугових покриттів CrN. Імплантований дейтерій в інтервалі доз 5∙10¹⁶…1.5∙10¹⁷ D/см² призводить до зменшення на 10…15% нанотвердості і модуля пружності покриттів. Опромінення дозами ≥ 1∙10¹⁸ D/см² викликає різке зниження нанотвердості покриттів через формування блістерів, які займають близько 30% поверхні покриття CrN. Імплантація дейтерію не призводить до утворення нових фаз у покритті CrN.
Методами рентгеноструктурного анализа, атомно-силовой микроскопии, наноиндентирования и термодесорбционной спектроскопии исследовано влияния дозы (5∙10¹⁶…1,5∙10¹⁸ D/см²) имплантированного дейтерия с энергией 24 кэВ на структуру, морфологию поверхности и механические свойства вакуумно-дуговых покрытий CrN. Имплантированный дейтерий в интервале доз 5∙10¹⁶…5∙10¹⁷ D/см² приводит к уменьшению на 10…15% нанотвердости и модуля упругости покрытий. Облучение дозами ≥ 1∙10¹⁸ D/см² вызывает резкое снижение нанотвердости покрытий из-за формирования блистеров, которые занимают около 30% поверхности покрытия CrN. Имплантация дейтерия не приводит к образованию новых фаз в покрытии CrN.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/136040 |
| citation_txt |
Effect of deuterium implantation dose on properties of CrN coatings / A.S. Kuprin, V.A. Belous, O.M. Morozov, V.D. Ovcharenko, S.N. Dub, G.N. Tolmachova, E.N. Reshetnyak, V.I. Zhurba, V.O. Progolaieva // Вопросы атомной науки и техники. — 2017. — № 2. — С. 184-189. — Бібліогр.: 29 назв. — англ. |
| work_keys_str_mv |
AT kuprinas effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT belousva effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT morozovom effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT ovcharenkovd effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT dubsn effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT tolmachovagn effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT reshetnyaken effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT zhurbavi effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT progolaievavo effectofdeuteriumimplantationdoseonpropertiesofcrncoatings AT kuprinas vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT belousva vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT morozovom vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT ovcharenkovd vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT dubsn vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT tolmachovagn vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT reshetnyaken vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT zhurbavi vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT progolaievavo vplivdoziímplantovanogodeiteríûnavlastivostípokrittívcrn AT kuprinas vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT belousva vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT morozovom vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT ovcharenkovd vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT dubsn vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT tolmachovagn vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT reshetnyaken vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT zhurbavi vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn AT progolaievavo vliâniedozyimplantirovannogodeiteriânasvoistvapokrytiicrn |
| first_indexed |
2025-11-25T20:35:34Z |
| last_indexed |
2025-11-25T20:35:34Z |
| _version_ |
1850526536824782848 |
| fulltext |
ISSN 1562-6016. PASТ. 2017. №2(108), p. 184-189.
UDC 669.296.004.0772
EFFECT OF DEUTERIUM IMPLANTATION DOSE ON PROPERTIES
OF CrN COATINGS
A.S. Kuprin
1
, V.A. Belous
1
, O.M. Morozov
1
, V.D. Ovcharenko
1
, S.N. Dub
2
, G.N. Tolmachova
1
,
E.N. Reshetnyak
1
, V.I. Zhurba
1
, V.O. Progolaieva
1
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
V.N. Bakul’ Institute of Superhard Materials, NAS of Ukraine, Kiev, Ukraine
E-mail: kuprin@kipt.kharkov.ua
The methods of X-ray diffraction analysis, atomic-force microscopy, nanoindentation and thermodesorption
spectroscopy have been applied to investigate the effect of a dose (from 5∙10
16
to 1.5∙10
18
D/сm
2
) of implanted
deuterium with energy of 24 keV on the structure, surface morphology and mechanical properties of vacuum-arc
CrN coatings. Deuterium ion implantation in the range of doses from 5∙10
16
to 1.5∙10
17
D/сm
2
decreases by 10…15%
the nanohardness and elastic modulus of coatings. Under exposition to doses ≥ 1∙10
18
D/сm
2
the coating
nanohardness sharply decreases because of blisters being formed and occupying about 30% of the CrN coating
surface. Deuterium implantation did not lead to formation of new phases in the CrN coating.
INTRODUCTION
Wide application of transition metal nitrides as pro-
tective coatings in industry is due to their excellent me-
chanical properties and high corrosion stability in ag-
gressive environment. Vacuum-arc deposition makes it
possible to obtain protective nitride films on different
materials [1]. However, the use of such coatings in the
atomic industry requires a comprehensive understanding
of their behavior in the irradiation environments. At
present, the extensive studies are carried out on stability
of the properties of bulk nitrides [2] and nitride coatings
[38] under different-type ion irradiations. Irradiation
with inert gases creates radiation defects in the coating
and can lead to amorphization and to blistering at high
doses [9]. This negative factor can influence on the
coating protective properties under radiation exposure.
Nitride coatings have a higher radiation resistance, as
compared to pure metals, steels and alloys, due to the
perfect nanostructure and strong chemical bonds of el-
ements. Chemically active gases, e. g. hydrogen and its
isotopes, can initiate phase changes in materials leading
to the degradation of their properties [10]. In water-
cooled reactors, there are two major mechanisms of
hydrogen formation oxidation of zirconium and radi-
olysis of water [11]. For different types of nuclear pow-
er plants in structural materials accumulated various
levels of the hydrogen atoms (from a few to thousands
appm) [12]. Therefore, to study the hydrogen implanta-
tion effect on the properties of nitride-containing coat-
ings is an urgent problem.
Previously we have investigated the implanted deu-
terium dose influence on the hardness and structure of
TiN [13], TiAlSiN, TiAlYN [14] coatings and high-
entropy TiZrNbHfVN [15] coating. It has been estab-
lished that the deuterium thermodesorption spectrum
(TDS) structure is a function of the implanted deuterium
dose. As the implanted deuterium dose increases the
temperature range of deuterium desorption from the
coatings extends towards the temperature decrease
[13, 14]. When the irradiation dose exceeds
5∙10
17
D/cм
2
the hardness of nitride coatings becomes
almost twice as little [15].
Among two-component nitride coatings the CrN
coating demonstrates the highest corrosion resistance in
the super-critical water [16]. Application of the CrN
coating, as one of the protective layers in zirconium fuel
element tubes, sharply increases their resistance to the
high-temperature air oxidation [1719]. However, there
are no sufficient data available as to the behavior of this
coating under irradiation. For example, in [20] it is
shown that the CrN corrosion resistance in the super-
critical water can be decreased under γ-irradiation. The
authors of [21] have observed the change in the lattice
parameters, microstresses and grain size of the
magnetron CrN coatings deposited on the silicon
substrate under irradiation with 120 keV Ar ions at a
dose of 1∙10
16
ions/cm
2
. The structure stability after
irradiation of nanocrystalline CrN coatings was studied
in [22]. It has been established that under nitrogen ion
irradiation to the damage levels of 25 dpa their electrical
resistivity increases. At the same time, the radiation
exposure does not exert significant influence on the
coating grain size and does not lead to their
amorphization.
In the literature data on the changes of the mechani-
cal properties of CrN coating after irradiation are ab-
sent. For use protective coating in the hydrogen (deuter-
ium) containing environment it will need to determine
what concentration of accumulated deuterium can cause
structural changes and degradation of the mechanical
properties of the coatings.
In this paper we investigate the implanted deuterium
dose influence on the mechanical properties, structure,
morphology and temperature ranges of deuterium de-
sorption from CrN coatings prepared by a vacuum-arc
deposition.
1. EXPERIMENTAL
Coatings with 5 μm thickness were deposited from
the vacuum-arc plasma stream [23] separated from mac-
roparticles under 0.36 Pa nitrogen pressure, 100 A arc
current and -100 V bias potential on the polished
(Ra ~ 20 nm) substrates made from Ch18Ni10T steel
(20×10×1.5 mm). Temperature of specimens during
mailto:kuprin@kipt.kharkov.ua
deposition did not exceed 700 K. Cathodes ( 60 mm)
were of chromium (99.9%).
The coatings were irradiated with a 24 keV D
2 ion
beam at doses from 5∙10
16
to 1.5∙10
18
D/сm
2
at tempera-
ture of 293 K. The temperature range of ion-implanted
deuterium desorption from the specimens was investi-
gated by the thermodesorption spectroscopy method
using the device “Skif” [24]. The specimens were
placed on the heaters made of Cr18Ni10T steel ribbon.
The temperature was measured with a tungsten-rhenium
thermocouple VR5/20 attached to the specimen. After
implantation of a given deuterium dose the beam was
stopped and then the heating was switched on. During
heating the specimen temperature was increasing to
~ 1600 K by the linear law versus time with an average
heating rate of ~ 3.5 K/s. Deuterium release in the
measuring chamber was recorded with a mass-
spectrometer by m = 4 a.m.u. (D 2
). The implanted deu-
terium distribution profile was calculated by the pro-
gram SRIM 2008 [25]. Calculation results are shown in
Fig. 1. Maximum of deuterium profile is at a depth of
~ 104 nm, and the maximum depth of the implanted
layer is about 250 nm. We have previously shown that
the calculated depth of deuterium is in good agreement
with the measured in CrN coatings [26].
The phase composition and substructure of coatings
were investigated by the method of X-ray diffraction
analysis with a diffractometer DRON-4-07 in the fil-
tered copper anode radiation (Cu-Kα radiation). Diffrac-
tion patterns were taken by the -2 scanning circuit
with a Brag-Brentano focusing within the angle inter-
vals from 25 to 100 degrees. The diffraction pattern
processing was performed using the computer program
New_Profile. By the position of diffraction lines identi-
fied as lines of nitride with a cubic structure of NaCl
type the crystalline lattice period in the normal-to-film
surface direction (a) was determined. The crystallite size
in the nitride coating was evaluated by the broadening
of line (200) (L) from the Scherrer relation.
The surface morphology of the coatings before and
after irradiation was inspected with a scanning atomic-
force microscope (AFM) NanoScope IIIa in the periodic
contact mode. Silicon probes having a nominal point
radius of 10 nm were used.
Fig. 1. The depth distribution profile of the ion-
implanted deuterium with an energy of 24 keV
in the CrN coating (calculated by SRIM 2008)
Nanoindentation was performed by means of the in-
strument Nanoindenter G200 (“Agilent Technologies”,
USA) using a Berkovich diamond indenter having a
230 nm radius. The instrument is provided with an at-
tachment designed for continuous control of the contact
stiffness (CSM) that makes it possible to determine the
dependence of the hardness and elastic modulus on the
indenter penetration depth from the results of a single
test. The hardness was measured to the indenter penetra-
tion depth of 300 nm. The tests were conducted with a
constant deformation rate in an imprint equals to
0.05 s
-1
. The hardness and the elastic modulus were de-
termined by the method of Oliver and Pharr [27].
2. RESULTS AND DISCUSSION
Fig. 2 presents the diffraction pattern of the as-
deposited CrN coating. Here besides the substrate lines
(denoted by S) one can see the lines of CrN nitride hav-
ing a cubic structure (NaCl-type structure). The dashed
lines show the CrN peak position (PDF card number
No 11-0065, JCPDS cards numbers: 03-065-6914;
03-065-9001; 03-065-2829). The observed nitride line
shift on the diffraction patterns towards the smaller an-
gles, relatively to the position of corresponding nitride
lines, can be caused by formation of compression resid-
ual stresses in coatings.
On the diffraction pattern of CrN coatings only lines
(200) and (311) are visible. The crystallite size of the
coating is 11 nm, the lattice parameter is а = 0.424 nm.
A low intensity of lines, a high level and characteristic
shape of the background suggests that the CrN coating
contains, besides crystalline nitride, a significant
amount of X-ray amorphous phase.
The deuterium ion implantation at a dose of
1.5∙10
18
D/сm
2
does not lead to significant changes in
the diffraction patterns of coatings: the pattern looks
unchanged, new diffraction reflections do not appear,
the width of lines and their intensity relation show no
changes that evidence on the coating structure stability.
The absence of changes on the CrN coating diffraction
pattern can be explained by the fact that deuterium in-
teracts mainly with the amorphous component of this
condensate, and its implantation depth is insufficient for
the X-ray diffraction analysis.
Fig. 2. Diffraction pattern of the CrN coating
The AFM images of the surface fragments of unirra-
diated and irradiated coatings are shown in Fig. 3,a,b.
The relief of as-deposited films has a cellular structure
which is characteristic for the method applied. The
roughness is ~ 60 nm. Deuterium implantation at a dose
of 1.5∙10
18
D/сm
2
significantly changes the coating sur-
face that can be interpreted as a blister formation.
а
b
Fig. 3. Morphology of the CrN coating surface
before (a) and after (b) deuterium implantation
at a dose of 1.5∙10
18
D/сm
2
One can see (see Fig. 3,b) that on the CrN coating an
intensive increase of cellular sizes takes place. Blisters
cover ~ 30% of the surface, their height is
~ 50…200 nm and the characteristic volume of a single
blister is ~ 1∙10
8
nm
3
. As a result of blister formation the
coating surface roughness increases to Ra ≈ 200 nm.
The authors of [28] have observed the hydrogen
blistering on the specimens of TiN and HfN nitride
coatings irradiated with 40 keV deuterium ions at a dose
of 1.25∙10
18
D/сm
2
. It should be noted that in our case
blisters do not break up even at a maximum irradiation
dose of 1.5∙10
18
D/cm
2
probably due to the presence in
the CrN coatings structure of an amorphous component
which promotes the deuterium dissolution in the im-
plantation layer.
Fig. 4 presents the values of the hardness and elastic
modulus for coatings before irradiation and after deuter-
ium irradiation at doses within the range
5∙10
16
…1.5∙10
18
D/сm
2
at a depth of indenter penetra-
tion to 300 nm. It is seen that the CrN coatings are char-
acterized by the high hardness of ~ 30 GPa and the elas-
tic modulus of ~ 330 GPa. As a result of deuterium ion
implantation the hardness and elastic modulus of the
CrN coating are decreased. The implantation dose range
can be conventionally divided into three parts by the
degree of their influence on the mechanical properties of
the coating. The changes are minimal at a dose of
5∙10
16
D/сm
2
, and at doses of (1…5)∙10
17
D/сm
2
the
hardness decreases insignificantly (by 10…15%). A
sharp decrease of the nanohardness to ~ 12 GPa and of
the elastic modulus to 200 GPa occurs under deuterium
irradiation at doses of (1…1.5)∙10
18
D/сm
2
.
Fig. 4. Effect of the deuterium irradiation dose on the
hardness (H) and elastic modulus (E) of CrN coatings
The indenter penetration diagrams obtained for the
as-deposited CrN coatings and for the coatings irradiat-
ed at a dose of 1.5∙10
18
D/сm
2
are presented in Fig. 5.
For the as-deposited CrN coating the penetration dia-
gram is typical, i. e. the indenter tip moves with load
increasing. After coating irradiation the character of the
load-displacement curves varies. For all the indentations
on the load-displacement curve a sharp increase of the
indenter movement by 10…25 nm (pop-in) is observed
and the depth of pop-in formation for each indentation
is different (200…250 nm) (see Fig. 5). This is some-
what deeper than the calculated profile maximum of
deuterium depth of ~ 160 nm. The critical load value, at
which a pop-in is formed, varies between 20 and
25 mN. In our opinion such a behavior of the penetra-
tion diagram for CrN coatings irradiated at a dose of
1.5∙10
18
D/сm
2
can be explained by the presence in the
coating of regions with very low hardness. It is quite
possible that the regions being formed are hydride blis-
ters. The authors of [6] have observed a similar effect of
the pop-in formation under irradiation of Ti-Zr-N mag-
netron coatings with 360 keV Xe ions at a dose of
8·10
14
ions/cm
2
that explained by the formation of voids
and gas bubbles in the coating. Judging from a sharp
decrease of the nanohardness in Fig. 3, the blister for-
mation begins after the implantation dose above
5∙10
17
D/сm
2
.
Fig. 5. Load-displacement curves of the CrN coating:
as-deposited and irradiated at a dose
of 1.5∙10
18
D/сm
2
So, the presence of pop-ins in the loading diagram
for the irradiated coating compared with the unirradiat-
ed coating confirms the assumption of blistering for-
mation in the CrN coatings irradiated at a dose of
1.5∙10
18
D/сm
2
.
Fig. 6 shows the deuterium thermodesorption spectra
of CrN coatings irradiated at different doses.
Fig. 6. Deuterium thermodesorption spectra of CrN
coatings irradiated at different doses:
1.5∙10
16
…3∙10
18
D/cm
2
One can see that in the deuterium TDS of CrN coat-
ings there is only a single desorption temperature range
with the center of gravity at 1120 K throughout the
range of implantation doses under consideration. A sin-
gle-peaked behavior of the deuterium TDS points to the
presence of only one coating structure state which is
unchangeable throughout the range of implanted deuter-
ium.
Fig. 7 presents the dependence of the total amount of
retained deuterium on the irradiation dose. This depend-
ence is linear only up to a dose of 2.5∙10
18
D/сm
2
. Then
a sharp deviation from the linearity and the attainment
of saturation is observed.
Fig. 7. Total amount of desorbed deuterium as a
function of an irradiation dose in the CrN coating
Implanted deuterium in the CrN coating is
practically motionless and takes place within the bounds
of the implantation profile. Therefore, taking into
account the average projective range of 24 keV D 2
ions
in the chromium nitride it is easy to show that at a
saturation dose of 2.5∙10
18
D/cm
2
the deuterium
concentration in the implantation layer is of about 2 D
atoms per 1 Cr atom. A single peak in the deuterium
TDS generally characterizes the formation and
decomposition of the deuterium solid solution phase in
metals [29] (CrN coating in our case). A lack of low-
temperature peak formation in the thermodesorption
spectra by increasing the implanted deuterium dose,
characteristic for hydride-forming metals, indicates to
the absence of deuterium-CrN coating interaction
leading to the formation of hydrides with low-
temperature decomposition.
CONCLUSIONS
1. A CrN coating, deposited from the filtered
vacuum-arc plasma stream, has a cubic crystalline
structure with an axial texture and crystallite size
≈ 11 nm. The methods of X-ray diffraction analysis did
not reveal a new phase formation at a deuterium
irradiation dose of ~ 1.5∙10
18
D/сm
2
.
2. The atomic-force microscopy data show that
deuterium irradiation up to a dose of ≥ 1∙10
18
D/сm
2
causes the formation on the coating surface of blisters
having a characteristic height of ~ 150…200 nm which
cover about 30% of the irradiated coating surface.
3. A CrN coating is characterized by a high
hardness of ~ 30 GPa. The deuterium ion implantation
results in the hardness decrease. In the range of doses
from 5∙10
16
to 5∙10
17
D/сm
2
the hardness decreases by
10…15%. The nanohardness decrease to ~ 50% occurs
at doses > 5∙10
17
D/сm
2
, most likely, due to the blister
formation.
4. A maximum deuterium concentration in the
implantation layer of the CrN coating is ~ 2 D atoms per
1 Cr atom after irradiation at a dose of ~ 2.5∙10
18
D/сm
2
.
5. In the deuterium desorption spectrum of CrN
coatings only a single temperature peak at temperature
of 1120 K is observed throughout the range of
implanted doses being investigated that indicates to a
lack of hydride formation.
The obtained investigation results show that
significant changes in the CrN coatings deposited by the
vacuum-arc method take place at implanted deuterium
doses of > 5∙10
17
D/сm
2
.
ACKNOWLEDGMENTS
We are also thankful to Dr. P.М. Lytvyn for carrying
out atomic force microscopy tests at the V.E. Lashkarev
Institute of Semiconductor Physic, NAS of Ukraine,
Kiev.
REFERENCES
1. I.I. Aksenov, A.A. Andreev, V.A. Belous,
V.E. Strel'nitskij, V.M. Khoroshikh. Vacuum-Arc Plas-
ma sources, coatings deposition, surface modification.
Kyiv: “Naukova dumka”, 2012, 728 p.
2. R. Bès, C. Gaillard, N. Millard-Pinard, S. Ga-
varini, P. Martin, S. Cardinal, C. Esnouf, A. Malchère,
A. Perrat-Mabilon. Xenon behavior in TiN: A coupled
XAS/TEM study // Journal of Nuclear Materials. 2013,
v. 434, p. 56-64.
3. L. Jiao, A. Chen, M.T. Myers, M.J. General,
L. Shao, X. Zhang, H. Wang. Enhanced ion irradiation
tolerance properties in TiN/MgO nanolayer films //
Journal of Nuclear Materials. 2013, v. 434, p. 217-222.
4. H. Wang, R. Araujo, J.G. Swadener, Y.Q. Wang,
X. Zhang, E.G. Fu, T. Cagin. Ion irradiation effects in
nanocrystalline TiN coatings // Nuclear Instruments and
Methods in Physics Research B. 2007, v. 261, p. 1162-
1166.
5. M. Popović, M. Novaković, N. Bibić. Structural
characterization of TiN coatings on Si substrates irradi-
ated with Ar ions // Materials Characterization. 2009,
v. 60, p. 1463-1470.
6. V.V. Uglov, D.P. Rusalski, S.V. Zlotski,
A.V. Sevriuk, G. Abadias, S.B. Kislitsin,
K.K. Kadyrzhanov, I.D. Gorlachev, S.N. Dub. Stability
of Ti–Zr–N coatings under Xe-ion irradiation // Surface
and Coatings Technology. 2010, v. 204, p. 2095-2098.
7. M. Kawaia, H. Kokawa, M. Michiuchi, et. al.
Present status of study on development of materials
resistant to radiation and beam impact // Journal of Nu-
clear Materials. 2008, v. 377, p. 21-27.
8. A.A. Andreev, V.N. Voyevodin, O.V. Sobol’, et.
al. Regularities in the effect of model ion irradiation on
the structure and properties of vacuum-arc nitride coat-
ings // Problems of Atomic Science and Technology.
2013, N 5(87), p. 142-146
9. М.I. Guseva, Yu.V. Martynenko. Radiation blis-
tering // Uspekhi Fizicheskikh Nauk. 1981, v. 135, N 4,
p. 671-691 (in Russian).
10. T. Laursen, M. Leger, Xin-Pei Ma, et. al. The
measurement of the deuterium concentration distribu-
tions in deuteride blisters on zirconium-alloy pressure
tube material // Journal of Nuclear Materials. 1989,
N 165, p. 156-163.
11. X. Hu, K.A. Terrani, B.D. Wirth. Hydrogen de-
sorption kinetics from zirconium hydride and zirconium
metal in vacuum // Journal of Nuclear Materials. 2014,
v. 448, p. 87-95.
12. F.A. Garner, E.P. Simonen, B.M. Oliver,
L.R. Greenwood, M.L. Grossbeck, W.G. Wolfer,
P.M. Scott. Retention of hydrogen in fcc metals irradi-
ated at temperatures leading to high densities of bubbles
or voids // Journal of Nuclear Materials. 2006, v. 356,
p. 122-135.
13. A.S. Kuprin, O.M. Morozov, V.D. Ovcha-
renko, et al. Nanocrystalline TiN films after deuterium
ions irradiation // International conference Functional
materials and nanotechnologies, Tartu, Estonia in April,
21–24, 2013, PO-170.
14. V.A. Belous, A.S. Kuprin, N.S. Lomino, et al.
Influence of Deuterium Ion Implantation on the Struc-
ture and Hardness of Nanocrystalline Films // Proceed-
ings of the 2-nd International Conference Nanomateri-
als: Applications and Properties, Alushta, Ukraine,
1722, September, 2012, v. 1, N 4, 04RES07 (3 p.).
15. A.S. Kuprin, O.M. Morozov, V.A. Belous et al.
Effects of Deuterium Implantation Dose on Hardness
and Deuterium Desorption Temperature Range from
High-Entropy TiVZrNbHf and TiVZrNbHfN Coatings
// Proceedings of the International Conference on Na-
nomaterials: Applications and Properties. 2013, v. 2,
N 2, 02FNC20 (3 p.).
16. S. Korablov, M.A.M. Ibrahim, M. Yoshimura.
Hydrothermal corrosion of TiAlN and CrN PVD films
on stainless steel // Corrosion Science. 2005, v. 47,
p. 1839-1854.
17. A.S. Kuprin, V.A. Belous, V.N. Voyevodin, et
al. High-temperature air oxidation of E110 and Zr-1Nb
alloy claddings with coatings // Problems of Atomic
Science and Technology. 2014, N 1 (89), p. 126-132.
18. А.S. Kuprin, V.А. Belous, V.N. Voyevodin
et.al. Vacuum-arc chromium-based coatings for protec-
tion of zirconium alloys from the high-temperature oxi-
dation in air // Journal of Nuclear Materials. 2015,
v. 465, p.400-406.
19. K. Daub, R. Van Nieuwenhove, H. Nordin. In-
vestigation of the impact of coatings on corrosion and
hydrogen uptake of Zircaloy-4 // Journal of Nuclear
Materials. 2015, v. 467, p.260-270.
20. Kawana, H. Ichimura, Y. Iwata, S. Ono. De-
velopment of PVD ceramic coatings for valve seats //
Surface and Coatings Technology. 1996, v. 86-87,
p. 212-217.
21. M. Novakovic´, M. Popovic´, N. Bibic. Ion-
beam irradiation effects on reactively sputtered CrN thin
films // Nuclear Instruments and Methods in Physics
Research B. 2010, v. 268, p. 2883-2887.
22. A. Guglya, I. Neklyudov, R. Vasilenko. Effect
of helium ion irradiation on the structure and electrical
resistivity of nanocrystalline CrN and V-N coatings //
Radiation Effects and Defects in Solids. 2007, v. 162,
issue 9, p. 643-649.
23. I.I. Aksenov, V.M. Khoroshikh. Filtering
shields in vacuum-arc plasma sources // Materials Sci-
ence Forum. 1998, v. 287-288, p. 283-286.
24. V.V. Ruzhitsky, Yu.A. Gribanov,
V.F. Rybalko, S.M. Khazan, A.N. Morozov,
I.S. Martynov // Voprosy Atomnoj Nauki I Tekhniki.
Serya “FRP RM”. 1989, issue 4(51), р. 84-89 (in Rus-
sian).
25. http://www.srim.org/
26. G.D. Tolstolutskaya, I.E. Kopanetz, V.V. Ru-
zhytskiy, V.A. Bilous, A.S. Kuprin, V.D. Ovcharenko,
R.L. Vasilenko, S.A. Leonov. Decrease of hydrogen
saturation of zirconium alloys at modification of surface
by complex ion-plasma treatment // Problems of Atomic
Science and Technology. 2015, N 2 (96), p. 119-123.
27. W. Oliver, G. Pharr. Measurement of hardness
and elastic modulus by instrumented indentation: Ad-
vances in understanding and refinements to methodolo-
gy // J. Mater. Res. 2004, v. 19, N 1, p. 3-20.
28. R.G. Duckworth, I.H. Wilson. Ion bombard-
ment of group IV elemental metal and synthetic nitride
films // Thin Solid Films. 1979, v. 63, issue 2,
1 November, p. 289-297.
29. I.M. Neklyudov, O.M. Morozov, V.G. Kulish,
V.I. Zhurba. P.A. Khaimovich, A.G. Galitskiy. Hydro-
gen diagnostics of structural states in 18Cr10NiTi steel
// Journal of Hydrogen Energy. 2011, v. 36, р. 1192-
1195.
Article received 25.01.2017
http://www.srim.org/
ВЛИЯНИЕ ДОЗЫ ИМПЛАНТИРОВАННОГО ДЕЙТЕРИЯ
НА СВОЙСТВА ПОКРЫТИЙ CrN
А.С. Куприн, В.А. Белоус, А.Н. Морозов, В.Д. Овчаренко, С.Н. Дуб, Г.Н. Толмачева,
Е.Н. Решетняк, В.И. Журба, В.О. Проголаева
Методами рентгеноструктурного анализа, атомно-силовой микроскопии, наноиндентирования и
термодесорбционной спектроскопии исследовано влияния дозы (5∙10
16
…1,5∙10
18
D/см
2
) имплантированного
дейтерия с энергией 24 кэВ на структуру, морфологию поверхности и механические свойства вакуумно-
дуговых покрытий CrN. Имплантированный дейтерий в интервале доз 5∙10
16
…5∙10
17
D/см
2
приводит к
уменьшению на 10…15% нанотвердости и модуля упругости покрытий. Облучение дозами ≥ 1∙10
18
D/см
2
вызывает резкое снижение нанотвердости покрытий из-за формирования блистеров, которые занимают
около 30% поверхности покрытия CrN. Имплантация дейтерия не приводит к образованию новых фаз в
покрытии CrN.
ВПЛИВ ДОЗИ ІМПЛАНТОВАНОГО ДЕЙТЕРІЮ
НА ВЛАСТИВОСТІ ПОКРИТТІВ CrN
О.С. Купрін, В.А. Білоус, О.М. Морозов, В.Д. Овчаренко, С.М. Дуб, Г.М. Толмачова,
О.М. Рeшетняк, В.І. Журба, В.О. Проголаєва
Методами рентгеноструктурного аналізу, атомно-силової мікроскопії, наноіндентування і
термодесорбційної спектроскопії досліджено вплив дози (5∙10
16
…1,5∙10
18
D/см
2
) імплантованого дейтерію з
енергією 24 кеВ на структуру, морфологію поверхні та механічні властивості вакуумно-дугових покриттів
CrN. Імплантований дейтерій в інтервалі доз 5∙10
16
…1,5∙10
17
D/см
2
призводить до зменшення на 10…15%
нанотвердості і модуля пружності покриттів. Опромінення дозами ≥ 1∙10
18
D/см
2
викликає різке зниження
нанотвердості покриттів через формування блістерів, які займають близько 30% поверхні покриття CrN.
Імплантація дейтерію не призводить до утворення нових фаз у покритті CrN.
|