Ion exchange in photoactivated inorganic matters

The effects of monovalent and bivalent impurities on the diffusive mobility sodium, caesium and strontium in magnesium potassium phosphate hexahydrate and clinoptilolite were analysed. It was determined that ratio of diffusion coeffcients of sodium concerning caesium and strontium are in antagonisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Dikiy, N.P., Dovbnya, A.N., Lyashko, Yu.V., Medvedev, D.V., Medvedeva, E.P., Parhomenko, Yu.G., Uvarov, V.L., Fedorets, I.D.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2017
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/136064
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ion exchange in photoactivated inorganic matters / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, Yu.G. Parhomenko, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 3. — С. 40-44. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-136064
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1360642025-02-09T14:13:17Z Ion exchange in photoactivated inorganic matters Іонний обмін у фотоактивованих неорганічних речовинах Ионный обмен в фотоактивированных неорганических веществах Dikiy, N.P. Dovbnya, A.N. Lyashko, Yu.V. Medvedev, D.V. Medvedeva, E.P. Parhomenko, Yu.G. Uvarov, V.L. Fedorets, I.D. Ядерно-физические методы и обработка данных The effects of monovalent and bivalent impurities on the diffusive mobility sodium, caesium and strontium in magnesium potassium phosphate hexahydrate and clinoptilolite were analysed. It was determined that ratio of diffusion coeffcients of sodium concerning caesium and strontium are in antagonistic dependence on the caesium and strontium content in a matrices on the basis of magnesium potassium phosphate hexahydrate. It is established that the diffusion process in the magnesium potassium phosphate hexahydrate is due to the Frenkel. The influence of the diffusion of impurity elements as a function of the ionic radius and the ion position in the crystal lattice of clinoptilolite has been studied. Проаналізовано вплив моновалентних і двовалентних домішок на дифузійну рухливість натрію, цезію і стронцію в гексагідраті фосфату калію магнію. Визначено, що відношення коефіцієнтів дифузії натрію щодо цезію і стронцію знаходяться в антагоністичній залежності від вмісту цезію і стронцію в матрицях на основі гексагідраті фосфату калію магнію. Встановлено, що дифузійний процес у гексагідраті фосфату калію магнію обумовлений механізмом Френкеля. Вивчено вплив дифузії домішкових елементів в залежності від іонного радіуса і займаної позиції в кристалічній решітці кліноптілоліта. Проанализировано влияние моновалентных и двухвалентных примесей на диффузионную подвижность натрия, цезия и стронция в гексагидрате фосфата калия магния. Определено, что отношения коэффициентов диффузии натрия относительно цезия и стронция находятся в антагонистической зависимости от содержания цезия и стронция в матрицах на основе гексагидрата фосфата калия магния. Установлено, что диффузионный процесс в гексагидрате фосфата магния обусловлен механизмом Френкеля. Изучено влияние диффузии примесных элементов в зависимости от ионного радиуса и занимаемой позиции в кристаллической решетке клиноптилолита. 2017 Article Ion exchange in photoactivated inorganic matters / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, Yu.G. Parhomenko, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 3. — С. 40-44. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 66.30.-h; 81.05.Rm https://nasplib.isofts.kiev.ua/handle/123456789/136064 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
spellingShingle Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Medvedev, D.V.
Medvedeva, E.P.
Parhomenko, Yu.G.
Uvarov, V.L.
Fedorets, I.D.
Ion exchange in photoactivated inorganic matters
Вопросы атомной науки и техники
description The effects of monovalent and bivalent impurities on the diffusive mobility sodium, caesium and strontium in magnesium potassium phosphate hexahydrate and clinoptilolite were analysed. It was determined that ratio of diffusion coeffcients of sodium concerning caesium and strontium are in antagonistic dependence on the caesium and strontium content in a matrices on the basis of magnesium potassium phosphate hexahydrate. It is established that the diffusion process in the magnesium potassium phosphate hexahydrate is due to the Frenkel. The influence of the diffusion of impurity elements as a function of the ionic radius and the ion position in the crystal lattice of clinoptilolite has been studied.
format Article
author Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Medvedev, D.V.
Medvedeva, E.P.
Parhomenko, Yu.G.
Uvarov, V.L.
Fedorets, I.D.
author_facet Dikiy, N.P.
Dovbnya, A.N.
Lyashko, Yu.V.
Medvedev, D.V.
Medvedeva, E.P.
Parhomenko, Yu.G.
Uvarov, V.L.
Fedorets, I.D.
author_sort Dikiy, N.P.
title Ion exchange in photoactivated inorganic matters
title_short Ion exchange in photoactivated inorganic matters
title_full Ion exchange in photoactivated inorganic matters
title_fullStr Ion exchange in photoactivated inorganic matters
title_full_unstemmed Ion exchange in photoactivated inorganic matters
title_sort ion exchange in photoactivated inorganic matters
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2017
topic_facet Ядерно-физические методы и обработка данных
url https://nasplib.isofts.kiev.ua/handle/123456789/136064
citation_txt Ion exchange in photoactivated inorganic matters / N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, D.V. Medvedev, E.P. Medvedeva, Yu.G. Parhomenko, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2017. — № 3. — С. 40-44. — Бібліогр.: 13 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dikiynp ionexchangeinphotoactivatedinorganicmatters
AT dovbnyaan ionexchangeinphotoactivatedinorganicmatters
AT lyashkoyuv ionexchangeinphotoactivatedinorganicmatters
AT medvedevdv ionexchangeinphotoactivatedinorganicmatters
AT medvedevaep ionexchangeinphotoactivatedinorganicmatters
AT parhomenkoyug ionexchangeinphotoactivatedinorganicmatters
AT uvarovvl ionexchangeinphotoactivatedinorganicmatters
AT fedoretsid ionexchangeinphotoactivatedinorganicmatters
AT dikiynp íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT dovbnyaan íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT lyashkoyuv íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT medvedevdv íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT medvedevaep íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT parhomenkoyug íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT uvarovvl íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT fedoretsid íonnijobmínufotoaktivovanihneorganíčnihrečovinah
AT dikiynp ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
AT dovbnyaan ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
AT lyashkoyuv ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
AT medvedevdv ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
AT medvedevaep ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
AT parhomenkoyug ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
AT uvarovvl ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
AT fedoretsid ionnyjobmenvfotoaktivirovannyhneorganičeskihveŝestvah
first_indexed 2025-11-26T16:36:32Z
last_indexed 2025-11-26T16:36:32Z
_version_ 1849871561702506496
fulltext ION EXCHANGE IN PHOTOACTIVATED INORGANIC MATTERS N.P. Dikiy1∗, A.N.Dovbnya1, Yu.V.Lyashko1, D.V.Medvedev1, E.P.Medvedeva1, Yu.G.Parhomenko1, V.L.Uvarov1, I.D.Fedorets2 1National Science Center "Kharkiv Institute of Physics and Technology", 61108, Kharkiv, Ukraine; 2V.N. Karazin Kharkiv National University, 61077, Kharkiv, Ukraine (Received April 31, 2017) The e�ects of monovalent and bivalent impurities on the di�usive mobility sodium, caesium and strontium in mag- nesium potassium phosphate hexahydrate and clinoptilolite were analysed. It was determined that ratio of di�usion coe�cients of sodium concerning caesium and strontium are in antagonistic dependence on the caesium and strontium content in a matrices on the basis of magnesium potassium phosphate hexahydrate. It is established that the di�usion process in the magnesium potassium phosphate hexahydrate is due to the Frenkel. The in�uence of the di�usion of impurity elements as a function of the ionic radius and the ion position in the crystal lattice of clinoptilolite has been studied. PACS: 66.30.-h; 81.05.Rm 1. INTRODUCTION The present article compares the more important nat- ural zeolite and ceramic based material (MgKPO4) for the immobilization of ion Cs+. There have been many articles published both on zeolite and magne- sium potassium phosphate hydrate which devoted to this problem, however, the use of radiation to modify the properties of these materials is relatively unre- ported [1-3]. Zeolites are inorganic solids consisting of enclosed regular cavities or channels of well-de�ned size and shape that are widely used in industry in separation processes, such as catalysts and in nanoreactors [4]. A major diversity of properties of zeolites is caused by its structural singularities. The crystalline skeleton, for example, clinoptilolite, consists of tetrahedrons [(Si,Al)O4] and has a substrati�ed constitution and two-dimensional system of channels. In this skele- ton which has the subzero charge, the part of ions Si4+ is substituted by ions Al3+, that is compen- sated by presence of such cations as Na+, K+, Ca2+, Mg2+, etc. These cations can easily be substituted by cations of other metals. Canals and vacuities of a crystalline skeleton clinoptilolite are �lled ¾zeolite water¿. In case of a dehydration of ¾zeolite water¿, clinoptilolite is selective sorbent of Cs+ and Sr2+ ions at the expense of coincidence of the dimensions of hol- lows of a clinoptilolite skeleton and of ionic radii of Cs+ (0.181 nm) and Sr2+ (0.132 nm). The kinetic characteristic of a sorption consists of interior dif- fusion of ions with coe�cient ∼10−11 cm2/s and of exterior di�usion with coe�cient ∼10−5 cm2/s. Tak- ing into account it, nanosize of clinoptilolite particles leads to increase of a rate of an ion exchange and to rise of adsorption capacity. Potassium magnesium phosphate hydrate are formed by reaction between magnesium oxide (MgO) and potassium dihydrogen phosphate (KH2PO4) in solution governed by reaction: MgO + KH2PO4 + 5H2O→MgKPO4·6H2O Such potassium magnesium phosphate hydrate have good mechanical strengths, good chemical stability and can be used for immobi- lization of radioactive waste in other matrices. The irradiating of magnesium potassium phos- phate hexahydrate in�uences the ionic exchange which has some the singularities [5] (Table 1). With an increase of an exposure dose the process of a leach- ing of ions from magnesium potassium phosphate hexahydrate decreases owing to structural modi�ca- tions. Table 1. The loss weight of ceramic samples after leaching during 858 hours, % Leaching samples Loss weight Irradiation KE+10%CaSiO3 14.6% e− 100 MGy +0.3%H3BO3 KW+10%CaSiO3 18.5% e− 100 MGy +0.3%H3BO3 KW+10%CaSiO3 19.9% γ 1 MGy KE+10%CaSiO3 21.6% γ 1 MGy +0.3%H3BO3 ∗Corresponding author E-mail address: ndikiy@kipt.kharkov.ua 40 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2017, N3(109). Series: Nuclear Physics Investigations (68), p.40-44. The essential di�erences note in the di�usion of univalent and divalent ions. Obviously, this is con- nected with near of Cs+ and K+ radii (0.181 and 0.152 nm, accordingly). Radius Na+ much less also is 0.116 nm. It is necessary to notice that irradiation of magnesium potassium phosphate hexahydrate as by electrons, and bremsstrahlung lead to decrease of Cs+ di�usion coe�cient at increasing of its content in a matrix. The similar mechanism of di�usion be- comes perceptible and for Sr2+ ion. The value of di�usion coe�cient Sr2+ depends on the quantity of its content in magnesium potassium phosphate. The most considerable modi�cations of Sr2+ di�usion co- e�cient, more than in 10 times, are observed at an irradiating of magnesium potassium phosphate hex- ahydrate by bremsstrahlung to doses 1 MGy. Apparently, in the course of an irradiating of sam- ples the part of magnesium oxide (MgO) is dissolv- ing in phosphoric acid (Table 1) [6]. Hydration ra- dius of Mg2+ (0.426 nm) is more than radius of Sr2+ (0.412 nm). Ions Mg2+ are in a structure of potas- sium magnesium phosphate hydrate in the form of an octahedron with 6 molecules of water (Fig.1). Fig.1. Projection of the crystal structure of the potassium analogue of struvite along the b-axis ro- tated 180◦ in the plane of the paper. It shows that the sites occupied by the K+ ion which, like the NH4 + ion, lie on the (101), (103), (200), and (002) planes, and di�raction from these planes should be most af- fected by the replacement of NH4 + by K+. The trace of the 101 plane through the K+ ions is marked [7] It transpires that a well-de�ned potassium ana- logue [MgKPO4·6H2O] of struvite exists, where K + replaces the NH4 + ammonium cations. These two compounds are isostructural with the existence of a complete isomorphous series from 100% K+ to 100% NH4 + struvite. This ion replacement is possible, as the ionic radii of K+ and NH4 + are almost identical (0.152 vs 0.151 nm). The purpose of this article is establishment of the mechanism of di�usion of univalent ions in magne- sium potassium phosphate hexahydrate depending on the content of divalent elements, and also investiga- tion of changes of value of di�usion coe�cients from an impurity content in samples. Also, the study of the in�uence of ion location in a crystal lattice of clinoptilolite on their di�usion was the purpose of this article. 2. MATERIALS AND METHODS Samples on the basis of magnesium potas- sium phosphate hexahydrate with imita- tors "Hanford-1" KE basin sludge and 10%CaSiO3+0.3%H3BO3, "Hanford-1" KW basin sludge and 10%CaSiO3+0.3%H3BO3, "Hanford-1" KW basin sludge and 10%CaSiO3, "Hanford-1" KE basin sludge and 10%CaSiO3+ 0.3%H3BO3 and clinoptilolite were irradiated by electrons and bremsstrahlung to dose 100 MGy and 1 MGy, ac- cordingly. After an irradiation, the leaching of samples was realized in the distilled water at tempera- ture 37◦C. pH of the solution of leaching was 9.5. Ge(Li)-detector was used for comparison of the γ-spectra of these samples before and after irradia- tion (Fig.2). 500 1000 1500 101 102 103 104 co un ts channel KW+10 CaSiO 3 +0,3H 3 BO 3 before leaching 67Ga 93 keV 511 keV 132Cs 667 keV 22Na 1275 keV 24Na 1369 keV 47Ca 1297 keV Fig.2. Energy spectrum of the sample of potassium magnesium phosphate hydrate after an irradiation on the electronic accelerator before leaching [5] 3. RESULTS AND DISCUSSION The di�usion coe�cients Na, Cs and Sr in samples of magnesium potassium phosphate hexahydrate were calculated from expression: q = 2√ π co √ Dt , where D � di�usion coe�cient, co � concentration of a studied element in substance. 41 The di�usion coe�cients of sodium in magnesium potassium phosphate hexahydrate demonstrate high similarity. Perhaps this is connected with a much smaller sodium radius relative to potassium radius (0.116 vs 0.152 nm). The ratio of the values sum of sodium di�usion coe�cient regarding values sum of caesium and strontium di�usion coe�cients largely characterize the behavior of Cs+ and Sr2+ ions. It can be seen, if the strontium content in matrix is large then the di�usion coe�cient of caesium in matrix on the basis of magnesium potassium phosphate hex- ahydrate (Tab. 2) is higher. On the other hand, the greater the amount of caesium, the greater di�usion coe�cient of strontium in ceramics on the basis of magnesium potassium phosphate hexahydrate. The strontium has more strong opposite e�ect of di�usion regarding caesium and potassium since strontium is not isomorphic impurity in a matrix on the basis of magnesium potassium phosphate hexahydrate. Table 2. The sum of ratios of the di�usion coe�cients of sodium relative to caesium and strontium and content of caesium and strontium in the ceramic samples KE+10%CaSiO3 KW+10%CaSiO3 KW+10%CaSiO3 KE+10%CaSiO3 +0.3%H3BO3 +0.3%H3BO3 +0.3%H3BO3 electrons, 100 MGy electrons, 100 MGy γ-radiation, 1 MGy γ-radiation, 1 MGy∑ DNa/DCs 15.87 28.3 34.6 14.7 content Cs, g/g 1.6·10−4 5.25·10−4 5.15·10−4 1.7·10−4∑ DNa/DSr 15.76 5.98 2.56 32.7 content Sr, g/g 9.97·10−3 4.63·10−3 4.37·10−3 1.09·10−2 The strength of the ion-dipole interaction of water molecules with cation decreases with in- creasing radius of the cation coordinated by the molecule. Therefore it can be expected that the low- temperature di�usion will be realised in hydrate of barium, and high-temperature � in hydrate of mag- nesium. But in real conditions, there is no com- plete con�rmation of this dependence on the radius of the cations. It is necessary to notice that di�u- sion rate depends not only on the energy state and not only from the chemical nature of cations and an- ions which are the nearest neighbours of a molec- ula of water. There is another parameter, for ex- ample, physical, or entropic which is connected with ðàçóïîðÿäî÷åííîñòüþ in a locating of atoms. Char- acter of atomic packaging of K, Mg and ÐÎ4 in mag- nesium potassium phosphate hexahydrate possesses speci�city which is bound to the extreme dimensions of these ions. From the laws of dense atomic packing, it is known that particles with high various sizes it is di�cult to package in an unambiguous way. Am- biguity in the arrangement of atoms creates intern- odes that can participate in the formation of migra- tion paths penetrating the whole crystal in a solid. In other words, we can say that enhanced di�usion in crystalline hydrates is in need of not only a suit- able energy but also a suitable space. Such space is in MgKPO4·6H2O. Magnesium potassium phosphate hexahydrate has a low speci�c gravity of 1.7 g/cm3. The content of impurities in the magnesium potassium phosphate hexahydrate also has a signi�- cant e�ect on di�usion processes, according to A Ly- dyard's theory [9]. The alloying of ionic NaCl crystals by Sr2+ ions leads to a decrease in the di�usion co- e�cients of anions, which is proof of the presence of Schottky defects [10]. In our case, cation di�usion is suppressed, indicating a di�erent di�usion mech- anism in potassium magnesium phosphate hydrate, according to the Frenkel di�usion mechanism [11]. The ionic radius of gallium is 0.076 nm, which is less than the ionic radii of sodium and potassium (0.116 and 0.152 nm, respectively). Therefore, inter- stitial gallium di�usion must be signi�cant. However, gallium is not an isomorphic impurity in magnesium potassium phosphate hexahydrate. Therefore, the di�usion coe�cient of gallium in magnesium potas- sium phosphate hexahydrate should di�er from the di�usion coe�cients of magnesium and potassium. The sum of the ratio ∑ DNa/DGa is less than 5%, therefore can suggest that the di�usion of gallium in magnesium potassium phosphate hexahydrate is realized by another mechanism than for impurities of sodium and caesium. Apparently, the di�usion of sodium, caesium, potassium in magnesium potassium phosphate hexahydrate realize by the Frenkel mech- anism. The di�usion coe�cients Na, Ca, K, Mn and Rn in clinoptilolite were calculated in the same way like for magnesium potassium phosphate hexahydrate with use of leachate of samples (Fig.3). On Fig. 4 the di�usion coe�cients of ions in clinoptilolite are presented. Clinoptilolite belongs to microporous materials and its properties are in many respects similar magnesium potassium phos- phate hexahydrate. Di�usion mobility in clinoptilo- lite is in many respects determined by steric factors. Also, it is supposed that di�usion of cations in clinop- tilolite is realized by the interstitial mechanism de- spite a high vacancy concentration in it [12]. The ionic radii of sodium and potassium are equal 0.116 and 0.152 nm that determines their site and bond with a lattice of clinoptilolite (Fig.5) [13]. 42 500 1000 1500 100 101 102 co un ts channel 511 keV 43K 373, 617 keV 89Zr 909 keV 22Na 1275 keV 24Na 1369 keV 40K 1461 keV 24Na'' 1732 keV Fig.3. The energy spectrum of clinoptilolite leachate 0,0 3,0x105 6,0x105 1E-20 1E-18 1E-16 D, m 2 /s time, s Na Ca K Mn Rn x 10-8 clinoptilolite Fig.4. Di�usion coe�cients of Na, Ca, K, Mn and Rn in clinoptilolite The potassium ion is in position À1 in coordination with 6 atoms of oxygen and 3 molecules of water, and the sodium ion is in positions À1 and B in coor- dination with 2 atoms of oxygen and 5 molecules of water. We will notice that cation bonding distances for sodium are 0.258 nm for site A1 and 0.267 nm for site B. The cation bonding distances for potassium is 0.31 (2 bonds), 0.297 (2 bonds), 0.316 (2 bonds) for site A1. The stronger connection of potassium ions with atoms of a skeleton clinoptilolite also causes lower di�usion mobility of potassium (see Fig.4). Di�usion mobility of manganese (the ionic radius of 0.0395 nm) a little more than for potassium. The manganese is bound with only 2 atoms of oxygen (A3-site) in a skeleton clinoptilolite. However, as a result of small ionic radius manganese is bound to 6 molecules of water and with strong enough bonds [13]. The cation-water distance for Mn6+ is only 0.22 nm. One can propose what the hydration com- plex [Mn(H2O)6] 2+ di�uses as the whole. Di�usion mobility of calcium (the ionic radius of 0.114 nm) a little smaller than for sodium. Calcium bonds to three framework oxygen atoms and �ve wa- ter molecules in the B-channel realize in clinoptilolite. It is known that in a structure mutual substitution between Ca and Na takes place, the Na polyhedra tend to be larger than Ca polyhedra. With prolonged leaching, the di�usion coe�cient of calcium decreases substantially, which is possibly due to competition with sodium ions for locations in the crystal lattice of clinoptilolite. Fig.5. Polyhedral model of a portion of the heulan- dite structure projected parallel to the c-axis with squares representing the most important extra- framework sites. In addition, the prominent sym- metry elements for space group C2/m are shown: small circles=centre of inversion, heavy horizon- tal lines=traces of mirror planes, double-barbed ar- rows=twofold axes [13] The di�usion of neutral radon in clinoptilolite is carried out by the Knudsen mechanism. Therefore, the di�usion coe�cient of radon in clinoptilolite is more by 8-9 orders of magnitude with respect to other ions. 4. CONCLUSIONS 1. The sums of the ratio of di�usion coe�cients of sodium concerning caesium and strontium are in antagonistic dependence on the caesium and stron- tium content in a matrix on the basis of magnesium potassium phosphate hexahydrate. The more of the strontium content correspond to the more of the di�u- sion coe�cient of caesium in a matrix on the basis of magnesium potassium phosphate hexahydrate. The more of the caesium content correspond to the more di�usion coe�cient of strontium in ceramics. 2. It is established that the di�usion process in the magnesium potassium phosphate hexahydrate is caused by the transition of ions from the site posi- tions of the regular lattice to the interstices, that is, by the Frenkel mechanism. 3. The di�usion of gallium in magnesium potas- sium phosphate hexahydrate is realized by the Shot- tky mechanism. 4. The di�usion of cations in clinoptilolite is re- alized by the interstitial mechanism and is depended from ion positions in a crystal lattice of clinoptilolite. References 1. N.Deneanu, M.Dulama, I. Teoreanu. Magnesium Phosphates Binding Systems for Immobilizing 43 Solvent Radioactive Wastes // Rev. Chim. (Bu- cureoti). 2008, v.59, N4, p.430-433. 2. A.S.Wagh. Chemically bonded phosphate ceram- ics. Amsterdam: "Elsevier", 2004, 283 p. 3. S.E.Vinokurov, Yu.M.Kulyako, O.M. Slyuntchev, et al. Low-temperature im- mobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices // J. Nucl. Mat. 2009, v.385, p.189-192. 4. M.W.Ackley, S.U.Rege, H. Saxena. Application of natural zeolites in the puri�cation and separa- tion of gases // Microp. Mesop. Mat. 2003, v.61, p.25-42. 5. N.P.Dikiy, A.N.Dovbnya, Yu.V. Lyashko, et al. Cesium, strontium and alkaline di�usion in mag- nesium kalium phosphates system // PAST, Ser.: "Nucl. Phys. Res".(93). 2014, N5(63), p.39-44. 6. A.S.Wagh, S.Y. Jeong. Chemically bonded phos- phate ceramic: 1. A dissolution model of for- mation // J. Am. Ceram. Soc. 2003, v.86(11), p.1838-1844. 7. M.Mathew, L.W. Schroeder. Crystal structure of a struvite analogue MgKPO4·6H2O // Acta Cryst. 1979, v.35, p.11-13. 8. S.P.Gabula. Bound water. Facts and hypothesis, Novosibirsk: "Nauka", 1982, 159 p. (in Russian). 9. A. Lydyard. Ionic conductivity of crystals, M.:"IL", 1962, 224 p. (in Russian). 10. H.Mehrer. Di�usion in Solids Fundamentals, Methods, Materials, Di�usion-Controlled Pro- cesses // Springer Series in Solid State Sciences. 2007, v.155, p.1-654. 11. A.Haneft. Frenkel and Shottky Defects in ion crystals, Germany, Saarbrucken, "LAP LAM- BERT". 2012, 299 p. (in Russian). 12. N.K.Moroz, I.S. Afanassyev, B.A. Fursenko et al. Ion mobility and dynamic disordering of water in analcime // Phys. Chem. Minerals. 1998, v.25, p.282-287. 13. A.Godelitsas, T.Armbruster. HEU-type zeolites modi�ed by transition elements and lead // Mi- crop. Mesop. Mat. 2003, v.61, p.3-24. ÈÎÍÍÛÉ ÎÁÌÅÍ Â ÔÎÒÎÀÊÒÈÂÈÐÎÂÀÍÍÛÕ ÍÅÎÐÃÀÍÈ×ÅÑÊÈÕ ÂÅÙÅÑÒÂÀÕ Í.Ï.Äèêèé, A.Í.Äîâáíÿ, Þ.Â.Ëÿøêî, Ä.Â.Ìåäâåäåâ, Å.Ï.Ìåäâåäåâà, Þ.Ã.Ïàðõîìåíêî, Â.Ë.Óâàðîâ, È.Ä.Ôåäîðåö Ïðîàíàëèçèðîâàíî âëèÿíèå ìîíîâàëåíòíûõ è äâóõâàëåíòíûõ ïðèìåñåé íà äèôôóçèîííóþ ïîäâèæ- íîñòü íàòðèÿ, öåçèÿ è ñòðîíöèÿ â ãåêñàãèäðàòå ôîñôàòà êàëèÿ ìàãíèÿ. Îïðåäåëåíî, ÷òî îòíîøåíèÿ êîýôôèöèåíòîâ äèôôóçèè íàòðèÿ îòíîñèòåëüíî öåçèÿ è ñòðîíöèÿ íàõîäÿòñÿ â àíòàãîíèñòè÷åñêîé çà- âèñèìîñòè îò ñîäåðæàíèÿ öåçèÿ è ñòðîíöèÿ â ìàòðèöàõ íà îñíîâå ãåêñàãèäðàòà ôîñôàòà êàëèÿ ìàã- íèÿ. Óñòàíîâëåíî, ÷òî äèôôóçèîííûé ïðîöåññ â ãåêñàãèäðàòå ôîñôàòà ìàãíèÿ îáóñëîâëåí ìåõàíèçìîì Ôðåíêåëÿ. Èçó÷åíî âëèÿíèå äèôôóçèè ïðèìåñíûõ ýëåìåíòîâ â çàâèñèìîñòè îò èîííîãî ðàäèóñà è çà- íèìàåìîé ïîçèöèè â êðèñòàëëè÷åñêîé ðåøåòêå êëèíîïòèëîëèòà. IÎÍÍÈÉ ÎÁÌIÍ Ó ÔÎÒÎÀÊÒÈÂÎÂÀÍÈÕ ÍÅÎÐÃÀÍI×ÍÈÕ ÐÅ×ÎÂÈÍÀÕ Ì.Ï.Äèêèé, A.Ì.Äîâáíÿ, Þ.Â.Ëÿøêî, Ä.Â.Ìåäâåä¹â, Î.Ï.Ìåäâåä¹âà, Þ.Ã.Ïàðõîìåíêî, Â.Ë.Óâàðîâ, I.Ä.Ôåäîðåöü Ïðîàíàëiçîâàíî âïëèâ ìîíîâàëåíòíèõ i äâîâàëåíòíèõ äîìiøîê íà äèôóçiéíó ðóõëèâiñòü íàòðiþ, öåçiþ i ñòðîíöiþ â ãåêñàãiäðàòi ôîñôàòó êàëiþ ìàãíiþ. Âèçíà÷åíî, ùî âiäíîøåííÿ êîåôiöi¹íòiâ äèôóçi¨ íà- òðiþ ùîäî öåçiþ i ñòðîíöiþ çíàõîäÿòüñÿ â àíòàãîíiñòè÷íié çàëåæíîñòi âiä âìiñòó öåçiþ i ñòðîíöiþ â ìàòðèöÿõ íà îñíîâi ãåêñàãiäðàòi ôîñôàòó êàëiþ ìàãíiþ. Âñòàíîâëåíî, ùî äèôóçiéíèé ïðîöåñ ó ãåêñà- ãiäðàòi ôîñôàòó êàëiþ ìàãíiþ îáóìîâëåíèé ìåõàíiçìîì Ôðåíêåëÿ. Âèâ÷åíî âïëèâ äèôóçi¨ äîìiøêîâèõ åëåìåíòiâ â çàëåæíîñòi âiä iîííîãî ðàäióñà i çàéìàíî¨ ïîçèöi¨ â êðèñòàëi÷íié ðåøiòöi êëiíîïòiëîëiòà. 44