On blow-up solutions and dead zones in semilinear equations

We study semilinear elliptic equations of the form div(A(z)∇u) = f(u) in Ω⊂ C, where A(z) stands for a symmetric 2×2 matrix function with measurable entries, det A =1, and such that 1/ K |ξ|² ≤ 〈A(z)ξ,ξ〉 ≤ K |ξ|², ξ ∈ R², 1≤ K < ∞. Making use of our Factorization theorem, we give some explicit so...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Доповіді НАН України
Дата:2018
Автори: Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2018
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/141139
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On blow-up solutions and dead zones in semilinear equations / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2018. — № 4. — С. 9-15. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-141139
record_format dspace
spelling Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
2018-08-04T18:02:13Z
2018-08-04T18:02:13Z
2018
On blow-up solutions and dead zones in semilinear equations / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2018. — № 4. — С. 9-15. — Бібліогр.: 12 назв. — англ.
1025-6415
DOI: doi.org/10.15407/dopovidi2018.04.009
https://nasplib.isofts.kiev.ua/handle/123456789/141139
517.5
We study semilinear elliptic equations of the form div(A(z)∇u) = f(u) in Ω⊂ C, where A(z) stands for a symmetric 2×2 matrix function with measurable entries, det A =1, and such that 1/ K |ξ|² ≤ 〈A(z)ξ,ξ〉 ≤ K |ξ|², ξ ∈ R², 1≤ K < ∞. Making use of our Factorization theorem, we give some explicit solutions for the above equation if f = e^u or f = e^q, when matrices A(z) are chosen in an appropriate form.
Досліджено напівлінійне диференціальне рівняння виду div(A(z)∇u)=f(u) в Ω⊂C, де A(z) — симетрична 2×2 матрична функція з вимірними коефіцієнтами, detA=1, і така, що 1/K|ξ|2⩽⟨A(z)ξ,ξ⟩⩽K|ξ|2,ξ∈R2,1⩽K<∞. Із застосуванням теореми про факторизацію, доведену нами раніше, наведено явні розв’язки для зазначеного рівняння, якщо матриці A(z) обрані належним чином і f=e^u або f=u^q.
Исследовано полулинейное дифференциальное уравнение вида div(A(z)∇u)=f(u) в Ω⊂C, где A(z) симметричная 2 Ч 2 матричная функция с измеримыми коэффициентами, detA =1 и такая, что 1/K|ξ|2⩽⟨A(z)ξ,ξ⟩⩽K|ξ|2,ξ∈R2,1⩽K<∞. С применением теоремы о факторизации, доказанной нами ранее, приведены явные решения для указанного уравнения, если матрицы A(z) выбраны надлежащим образом и f=e^u или f=u^q.
en
Видавничий дім "Академперіодика" НАН України
Доповіді НАН України
Математика
On blow-up solutions and dead zones in semilinear equations
Вибухові розв’язки та мертві зони для напівлінійних рівнянь
О взрывающихся решениях и мертвых зонах для полулинейных уравнений
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On blow-up solutions and dead zones in semilinear equations
spellingShingle On blow-up solutions and dead zones in semilinear equations
Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
Математика
title_short On blow-up solutions and dead zones in semilinear equations
title_full On blow-up solutions and dead zones in semilinear equations
title_fullStr On blow-up solutions and dead zones in semilinear equations
title_full_unstemmed On blow-up solutions and dead zones in semilinear equations
title_sort on blow-up solutions and dead zones in semilinear equations
author Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
author_facet Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
topic Математика
topic_facet Математика
publishDate 2018
language English
container_title Доповіді НАН України
publisher Видавничий дім "Академперіодика" НАН України
format Article
title_alt Вибухові розв’язки та мертві зони для напівлінійних рівнянь
О взрывающихся решениях и мертвых зонах для полулинейных уравнений
description We study semilinear elliptic equations of the form div(A(z)∇u) = f(u) in Ω⊂ C, where A(z) stands for a symmetric 2×2 matrix function with measurable entries, det A =1, and such that 1/ K |ξ|² ≤ 〈A(z)ξ,ξ〉 ≤ K |ξ|², ξ ∈ R², 1≤ K < ∞. Making use of our Factorization theorem, we give some explicit solutions for the above equation if f = e^u or f = e^q, when matrices A(z) are chosen in an appropriate form. Досліджено напівлінійне диференціальне рівняння виду div(A(z)∇u)=f(u) в Ω⊂C, де A(z) — симетрична 2×2 матрична функція з вимірними коефіцієнтами, detA=1, і така, що 1/K|ξ|2⩽⟨A(z)ξ,ξ⟩⩽K|ξ|2,ξ∈R2,1⩽K<∞. Із застосуванням теореми про факторизацію, доведену нами раніше, наведено явні розв’язки для зазначеного рівняння, якщо матриці A(z) обрані належним чином і f=e^u або f=u^q. Исследовано полулинейное дифференциальное уравнение вида div(A(z)∇u)=f(u) в Ω⊂C, где A(z) симметричная 2 Ч 2 матричная функция с измеримыми коэффициентами, detA =1 и такая, что 1/K|ξ|2⩽⟨A(z)ξ,ξ⟩⩽K|ξ|2,ξ∈R2,1⩽K<∞. С применением теоремы о факторизации, доказанной нами ранее, приведены явные решения для указанного уравнения, если матрицы A(z) выбраны надлежащим образом и f=e^u или f=u^q.
issn 1025-6415
url https://nasplib.isofts.kiev.ua/handle/123456789/141139
citation_txt On blow-up solutions and dead zones in semilinear equations / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Доповіді Національної академії наук України. — 2018. — № 4. — С. 9-15. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT gutlyanskiivya onblowupsolutionsanddeadzonesinsemilinearequations
AT nesmelovaov onblowupsolutionsanddeadzonesinsemilinearequations
AT ryazanovvi onblowupsolutionsanddeadzonesinsemilinearequations
AT gutlyanskiivya vibuhovírozvâzkitamertvízonidlânapívlíníinihrívnânʹ
AT nesmelovaov vibuhovírozvâzkitamertvízonidlânapívlíníinihrívnânʹ
AT ryazanovvi vibuhovírozvâzkitamertvízonidlânapívlíníinihrívnânʹ
AT gutlyanskiivya ovzryvaûŝihsârešeniâhimertvyhzonahdlâpolulineinyhuravnenii
AT nesmelovaov ovzryvaûŝihsârešeniâhimertvyhzonahdlâpolulineinyhuravnenii
AT ryazanovvi ovzryvaûŝihsârešeniâhimertvyhzonahdlâpolulineinyhuravnenii
first_indexed 2025-11-26T20:25:55Z
last_indexed 2025-11-26T20:25:55Z
_version_ 1850773394086166528
fulltext 9ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2018. № 4 1. Introduction. In this paper, we give new applications of the quasiconformal mappings theory, see e.g. [1—6], to the study of semilinear partial differential equations in the plane. Let Ω be a domain in the complex plane .C. Denote by 2 2( )M × Ω the class of two by two sym­ metric matrices ( ) { }jkA z a= with measurable entries and det ( ) 1A z = almost everywhere in Ω satisfying the uniform ellipticity condition 2 21 | | ( ) , | | a.e. in ,A z K K ξ 〈 ξ ξ〉 ξ Ω� � (1) for every .ξ∈C The factor K can be either a constant 1 K < ∞� or a measurable function ( ) ( ),K z L∈ Ω ( ) ( ),K z L∞∈ Ω with 1 ( )K z < ∞� a.e. in Ω. Every such matrix function A generates a quasi con for mal mapping ω as a homeomorphic solution of the Sobolev class 1, 2 loc ( )W Ω to the Beltrami equation ( ) ( ) ( ) a.e. in ,z zz z zω = µ ω Ω (2) where the complex dilatation ( )zµ is given by 22 11 12 1 ( ) ( 2 ). det( ) z a a ia I A µ = − − + (3) The condition of ellipticity (1) is written now as 1 | ( ) | a.e. in . 1 K z K − µ Ω + � (4) © V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov, 2018 doi: https://doi.org/10.15407/dopovidi2018.04.009 UDC 517.5 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk E­mail: vgutlyanskii@gmail.com, star­o@ukr.net, vl.ryazanov1@gmail.com On blow­up solutions and dead zones in semilinear equations Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskiĭ We study semilinear elliptic equations of the form div( ( ) ) ( )A z u f u∇ = in Ω ⊂C, where ( )A z stands for a sym met­ ric 2 2× matrix function with measurable entries, det 1A = , and such that 2 2 21/ | | ( ) , | | , ,K A z Kξ 〈 ξ ξ〉 ξ ξ ∈R� � 1 .K < ∞� Making use of our Factorization theorem, we give some explicit solutions for the above equation if uf e= or qf u= , when matrices ( )A z are chosen in an appropriate form. Keywords: quasiconformal mappings, semilinear PDE, blow­up solutions. 10 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2018. № 4 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov Vice versa, given a measurable complex­valued function µ satisfying (4), we can invert the al­ gebraic system (3) to obtain 2 2 2 2 2 2 | 1 | 2Im 1 | | 1 | | ( ) . 2Im |1 | 1 | | 1 | | A z  −µ − µ   − µ − µ =   − µ + µ   − µ − µ  (5) In this case, we say that the matrix function A and the corresponding quasiconformal mapping ω are agreed. Let :f →R R be a continuous function. In [7] we have proven the following Factorization theorem, cf. the corresponding result for the smooth case in [8]. Theorem 1. Let 2 2( ) ( ).A z M ×∈ Ω Then every weak solution 1, 2 loc ( ) ( )u W C∈ Ω ∩ Ω of the se­ milinear equation div [ ( ) ( )] ( ( )), ,A z u z f u z z∇ = ∈Ω (6) can be expressed as ( ) ( ( )),u z T z= ω (7) where : Gω Ω → is a K­quasiconformal mapping agreed with the matrix function 2 2( ) ( )A z M ×∈ Ω and 1, 2 loc ( ) ( )T W G C G∈ ∩ is a weak solution to the equation ( ) ( ( )), . . .T J w f T w a e in G∆ = (8) Here, ( )J w stands for the Jacobian determinant of the inverse mapping 1( ).z w−= ω Among the quasiconformal mappings : Gω Ω → , there are a variety of the so­called volume­pre­ serving maps, for which ( ) 1,J zω ≡ .z ∈Ω In this partial case, we arrive at the following statement: Corollary 1. Let 2 2( ) ( )A z M ×∈ Ω be a matrix function that generates a volume­preserving qua­ siconformal mapping ω(z). Then every weak solution 1, 2 loc ( ) ( )u W C∈ Ω ∩ Ω of the semilinear equation div [ ( ) ( )] ( ( )), ,A z u z f u z z∇ = ∈Ω (9) can be expressed as ( ) ( ( )),u z T z= ω (10) where 1, 2 loc ( ) ( )T W G C G∈ ∩ is a weak solution to the equation ( ( )), . . .T f T w a e in G∆ = (11) Some applications of the Factorization theorems that we are going to give below are based just on Corollary 1. 2. Explicit blow­up solutions. Let Ω be a bounded domain in C and let ∂ Ω denote its boundary. In this section, we study the problem div [ ( ) ( )] ( ( ))A z u z f u z∇ = , (12) ( ) , as ( ) : dist( , ) 0,u z d z z→ ∞ = ∂Ω → (13) 11ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2018. № 4 On blow­up solutions and dead zones in semilinear equations see, e.g., [9] and [10], as well as its Laplace’s counterpart: ( ) ( ( ))u z f u z∇ = , (14) ( ) , as ( ) : dist( , ) 0.u z d z z→ ∞ = ∂Ω → (15) Solutions to these problems are called boundary blow­up solutions or large solutions. If f(u) = eu, then (14) is a classical Liouville—Bieberbach semilinear equation that was first investigated by Bieberbach in his pioneering work [11] related to the study of automorphic functions in the plane. The corresponding equation (12) with f(u) = eu, can be viewed as a divergent counterpart to the Liouville—Bieberbach semilinear equation. Recall that if f is a conformal mapping of Ω onto the unit disk, then the boundary blow­up solutions for the Liouville—Bieberbach semilinear equation are expressed explicitly by the formula 2 2 2 8 | ( ) | ( ) log . (1 | ( ) | ) f z u z f z ′ = − (16) Theorem 2. Let Ω be the annulus | | 1r z< < in the complex plane C and let the matrix function 2 2( ) ( )A z M ×∈ Ω is generated by the formula (5) with the complex dilatation 2 2( ) (| |) (| |) 1 (| |) , z z z z z z   µ = ν ± ν − ν   (17) where ( ),tν 0 1t <� , stands for an arbitrary measurable function. If | ( ) | 1,t qν <� then there exists one and only one boundary blow­up solution to the semilinear equation div [ ( ) ] uA z u e∇ = in the annulus | | 1,r z< < (18) which is given explicitly by the formula 2 22 2 2 ( ) log . | | log | |log sin log u z z r z r π =  π ⋅     (19) Indeed, if the complex dilatation ( )zµ has the form ( ) (| |) , z z k z z µ = (20) where ( ) :k τ →R C is a measurable function such that | ( ) | <1,k kτ � then the formula | | 1 1 ( ) ( ) exp | | 1 ( ) z z k d z z k  + τ τ ω =  − τ τ   ∫ (21) represents a unique quasiconformal mapping of the unit disk, as well as the whole complex plane, onto itself with complex dilatation µ and the normalization: ω(0) = 0, ω(1) = 1, see, e.g., [4, p. 82], and [12]. Analyzing formula (21) with specified as above ( ),k t we see that the Jacobian ( ) 1,J zω ≡ i.e., the mapping ω is volume­preserving, and | ( ) | | |z zω = for .z ∈C Mapping conformally the given 12 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2018. № 4 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov annulus onto the unit disk and applying the Bieberbach explicit formula (16), we see that the function 2 22 2 2 ( ) log | | log | |log sin log T w w r w r π =  π ⋅     (22) represents the blow­up solution to the semilinear Liouville—Bieberbach equation in the annulus | | 1.r w< < It remains to apply Corollary 1. The uniqueness follows from a fundamental result by Marcus and Véron, see [10], Theorem 5.3.7. Our next example deals with the study of the blow­up solutions to the Liouville—Biberbach type equation defined in an unbounded domain of the complex plane. Theorem 3. Let H + be the right half­plane { : Re 0}z z > in the complex plane C and let the mat­ rix function 2 2( ) ( )A z M ×∈ Ω have the entries 11 1,a = 2 12 2 ( ) / 1 ( ),a x x= ± ν − ν 2 2 22 (1 3 ( )) / (1 ( ))a x x= + ν − ν 2 2(1 3 ( )) / (1 ( ))a x x= + ν − ν , where ( ),xν ,x ∈C stands for an arbitrary measurable real­valued function such that | ( ) | 1.x qν <� Then there exist boundary blow­up solutions to the semilinear equation div [ ( ) ] , ,uA z u e z H +∇ = ∈ (23) which are written explicitly: 2 2 ( ) log , ,u z z x iy x = = + (24) 2 2( ) log 8 2 2log(1 ), 0.xu z x e− λ= λ − λ − − λ > (25) Indeed, the matrix function ( )A z with the above entries generates, by formula (3) the com­ plex dilatation 2 2( ) ( ( ) ( ) 1 ( ))z x i x xµ = ν ± ν − ν (26) which, as we see, depends on x only. By Proposition 5.23 in [4], see also [12], a unique quasicon­ formal mapping of the right half­plane onto itself with the complex dilatation µ and the norma­ lization ω(0) = 0, ω (i) = i and ω(∞) = ∞, is represented explicitly by the formula 0 1 ( ) ( ) . 1 ( ) x t z dt iy t + µ ω = + − µ∫ (27) Analyzing formula (27), we see that the Jacobian ( ) 1,J zω ≡ i. e., the mapping ω is volume­ preserving, and Re ( )z xω = for .z ∈C By Corollary 1, a solution 1, 2 loc ( ) ( )u W C∈ Ω ∩ Ω of the sem­ ilinear equation div [ ( ) ( )] , ,uA z u z e z H +∇ = ∈ (28) is expressed as ( ) ( ( )),u z T z= ω (29) where 1, 2 loc ( )T W G∈ is a solution to the equation ( )( ) , .T wT w e in H +∆ = . (30) 13ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2018. № 4 On blow­up solutions and dead zones in semilinear equations Since the function 1 ( ) 1 w F w w − = + maps conformally the right half­plane H + onto the unit disk ,D we see that, by the Bieberbach formula (16), the function 2 2 2 8 | ( ) | ( ) log 2logRe log 2 (1 | ( ) | ) F w T w w F w ′ = = − + − gives us a blow­up solution to Eq. (30) in H + . Now, by formula (29), we have that the first re­ quired solution has the form ( ) ( ) 2logRe ( ) log 2 2logRe log 2.u z T z x= ω = − ω + = − + The second solution can be obtained in the same way. 3. Free boundary. The effect of the “dead zone” very important for applications to solutions of some partial differential equations, see, e.g., [9], the Introduction and § 1, is that the solution of the corresponding differential equation vanishes on some nonempty open set of the domain of definition. For example, it is well known that the solution of the semilinear equation qu u∆ = may have the “dead zone” only when 0 < <1,q see, e.g., [9, p. 15]. We confine ourselves to only one result in this direction, which is again a simple consequence of Corollary 1. Theorem 4. Let C be the complex plane and let the matrix function 2 2 22 2 ( ) 1 1 ( ) ( ) 2 ( ) 1 3 ( ) 1 ( )1 ( ) x x A z x x xx ν   − ν =  ν + ν   − ν− ν  ∓ ∓ , (31) where ( )xν , ,x ∈R stands for an arbitrary measurable real­valued function such that | ( ) | 1.x qν <� Then the semilinear equation div[ ( ) ] , 0 1, ,qA z u u q z∇ = < < ∈C (32) has the following solution with the “dead zone” in the complex plane: 2 1 2 0 2 ( ) , ( ), ,( , ) 1 ( ) 0 ( ). x q t y dt if y x xu x y t if x x −    ν γ ± > ϕ ∈ =   − ν   ϕ ∫ R � (33) 14 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2018. № 4 V.Ya. Gutlyanskiĭ, O.V. Nesmelova, V.I. Ryazanov Here, 1 2 1(1 ) , 2(1 ) qq q − − γ =  +  and 2 0 2 ( ) ( ) , , 1 ( ) x t dt y x x t ν = ϕ = ± ∞ < < +∞ − ν ∫ stands for the corresponding free boundary parametrization. Indeed, the matrix function ( )A z generates a quasiconformal automorphism of the complex plane ω , which is expressed explicitly by formula (27). Since the mapping ω is volume­pres­ erving, we can apply Corollary 1 in order to represent solutions to Eq. (32) in the form ( ) ( ( )),u z T z= ω where ( )T w satisfies the equation ( ) ( ), .qT w T w w i∆ = = ξ + η It remains to note that the function 2 1( ) , 0qT w if−= γη η > and ( ) 0T w = , if 0,η� satisfy the above equation. REFERENCES 1. Ahlfors, L. V. (1966). Lectures on quasiconformal mappings. Princeton, N.J.: Van Nostrand. 2. Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal map­ pings in the plane. Princeton Mathematical Series. (Vol. 48). Princeton, NJ: Princeton University Press. 3. Bandle, C. & Marcus, M. (1995). Asymptotic behavior of solutions and their derivatives, for semilinear ellip­ tic problems with blowup on the boundary. Ann. Inst. H. Poincaré. Anal. Non Lineaire, 12, No. 2, pp. 155­171. 4. Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi­lipschitz mappings in the plane. EMS Tracts in Mathematics. (Vol. 19). Zurich: European Mathematical Society. 5. Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A Geometric Ap­ proach. Developments in Mathematics. (Vol. 26). New York: Springer. 6. Lehto, O. & Virtanen, K. I. (1973). Quasiconformal mappings in the plane. 2nd ed. Berlin, Heidelberg, New York: Springer. 7. Gutlyanskii, V., Nesmelova, O. & Ryazanov, V. (2017). On quasiconformal maps and semilinear equations in the plane. Ukr. Mat. Visn., 14, No. 2, pp. 161­191; J. Math. Sci., 229, No. 1, pp. 7­29. 8. Gutlyanskii, V. Ya., Nesmelova, O. V. & Ryazanov, V. I. (2017). Semilinear equations in a plane and quasicon­ formal mapping. Dopov. Nac. akad. nauk Ukr., No. 1, pp. 10­16. 9. Diaz, J. I. (1985). Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic equations. Research Notes in Mathematics (Vol. 106). Boston: Pitman. 10. Marcus, M. & Veron, L. (2014). Nonlinear second order elliptic equations involving measures. De Gruyter Series in nonlinear analysis and applications. (Vol. 21). Berlin, Boston: Walter de Gruyter. 15ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2018. № 4 On blow­up solutions and dead zones in semilinear equations 11. Bieberbach, L. (1916). uu e∆ = und die automorphen Funktionen. Math. Ann., 77, pp. 173­212. 12. Gutlyanskii, V.Ya. & Ryazanov, V. I. (1995). On the theory of the local behavior of quasiconformal mappings. Izv. Ross. akad. nauk. Ser. Mat., 59, No. 3, pp. 31­58 (in Russian); Izv. Math., 59, No. 3, pp. 471­498. Received 07.12.2017 В.Я. Гутлянський, О.В. Нєсмєлова, В.І. Рязанов Інститут прикладної математики і механіки НАН України, Слов’янськ E­mail: vgutlyanskii@gmail.com, star­o@ukr.net, vl.ryazanov1@gmail.com ВИБУХОВІ РОЗВ’ЯЗКИ ТА МЕРТВІ ЗОНИ ДЛЯ НАПІВЛІНІЙНИХ РІВНЯНЬ Досліджено напівлінійне диференціальне рівняння виду div( ( ) ) ( )A z u f u∇ = в Ω ⊂C , де ( )A z — симетрична 2 × 2 матрична функція з вимірними коефіцієнтами, det 1A = , і така, що 2 2 21/ | | ( ) , | | , ,K A z Kξ 〈 ξ ξ〉 ξ ξ∈R� � 1 .K < ∞� Із застосуванням теореми про факторизацію, доведену нами раніше, наведено явні розв’язки для зазначеного рівняння, якщо матриці ( )A z обрані належним чином і uf e= або qf u= . Ключові слова: квазіконформні відображення, напівлінійні рівняння в частинних похідних, вибухові роз в’яз ки. В.Я. Гутлянский, О.В. Несмелова, В.И. Рязанов Институт прикладной математики и механики НАН Украины, Славянск E­mail: vgutlyanskii@gmail.com, star­o@ukr.net, vl.ryazanov1@gmail.com О ВЗРЫВАЮЩИХСЯ РЕШЕНИЯХ И МЕРТВЫХ ЗОНАХ ДЛЯ ПОЛУЛИНЕЙНЫХ УРАВНЕНИЙ Исследовано полулинейное дифференциальное уравнение вида div( ( ) ) ( )A z u f u∇ = в Ω ⊂C , где ( )A z — симметричная 2 × 2 матричная функция с измеримыми коэффициентами, det 1A = и такая, что 2 2 21/ | | ( ) , | | , ,K A z Kξ 〈 ξ ξ〉 ξ ξ∈� � 2 2 21/ | | ( ) , | | , ,K A z Kξ 〈 ξ ξ〉 ξ ξ∈R� � 1 .K < ∞� С применением теоремы о факторизации, доказанной нами ранее, приведены явные решения для указанного уравнения, если матрицы ( )A z выбраны надлежащим образом и uf e= или qf u= . Ключевые слова: квазиконформные отображения, полулинейные уравнения в частных производных, взры­ вающиеся решения.