Метод искусственного расширения пространства в задачах размещения геометрических объектов
Рассматривается задача оптимального размещения геометрических объектов с заданными формой и физико-метрическими параметрами. Выделяется комбинаторная структура задачи. На основе искусственного расширения размерности пространства сформулирована эквивалентная постановка исходной задачи, в которой физи...
Saved in:
| Published in: | Кибернетика и системный анализ |
|---|---|
| Date: | 2017 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2017
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/144792 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Метод искусственного расширения пространства в задачах размещения геометрических объектов / С.В. Яковлев // Кибернетика и системный анализ. — 2017. — Т. 53, № 5. — С. 82–89. — Бібліогр.: 30 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Рассматривается задача оптимального размещения геометрических объектов с заданными формой и физико-метрическими параметрами. Выделяется комбинаторная структура задачи. На основе искусственного расширения размерности пространства сформулирована эквивалентная постановка исходной задачи, в которой физико-метрические параметры являются независимыми переменными. Рассмотрен пример построения равновесной модели задачи упаковки кругов в круг минимального радиуса.
Розглянуто задачу оптимального розміщення геометричних об’єктів із заданими формою і фізико-метричними параметрами. Виділено комбінаторну структуру задачі. На основі штучного розширення розмірності простору сформульовано еквівалентну постановку вихідної задачі, у якої фізико-метричні параметри є незалежними змінними. Розглянуто приклад побудови рівноважної моделі задачі упаковки кругів у круг мінімального радіусу.
The problem of optimal placement of geometric objects with specified shape and physical-metric parameters is considered. The combinatorial structure of the problem is defined. An equivalent problem is formulated based on the artificial expansion of space dimension with physical-metric parameters being independent variables. The proposed approach is illustrated by the solution of balanced circular packing problem.
|
|---|---|
| ISSN: | 0023-1274 |