Estimates for the Gaussian Curvature of a Strictly Convex Surface and its Integral Parameters
Closed and non-closed (with planar edges) strictly convex surfaces with continuous curvatures are considered. Upper and lower bounds are obtained for the Gaussian curvature under various restrictions imposed on integral parameters of a surface: the diameter and width of the surface, the volume of th...
Saved in:
| Date: | 2018 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2018
|
| Series: | Журнал математической физики, анализа, геометрии |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/145855 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Estimates for the Gaussian Curvature of a Strictly Convex Surface and its Integral Parameters / V.I. Babenko // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 1. — С. 3-15. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Closed and non-closed (with planar edges) strictly convex surfaces with continuous curvatures are considered. Upper and lower bounds are obtained for the Gaussian curvature under various restrictions imposed on integral parameters of a surface: the diameter and width of the surface, the volume of the enclosed body, the maximum area of planar cross-sections of the enclosed body, the radius of a circumscribed or inscribed ball, the height of non-closed surface and the area enclosed by the planar boundary of the surface. |
|---|