The KPZ Equation and Moments of Random Matrices
The logarithm of the diagonal matrix element of a high power of a random matrix converges to the Cole–Hopf solution of the Kardar–Parisi–Zhang equation in the sense of one-point distributions.
Saved in:
| Date: | 2018 |
|---|---|
| Main Authors: | Gorin, Vadim, Sodin, Sasha |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2018
|
| Series: | Журнал математической физики, анализа, геометрии |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/145876 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The KPZ Equation and Moments of Random Matrices / Vadim Gorin, Sasha Sodin // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 3. — С. 286-296. — Бібліогр.: 35 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
The KPZ Equation and Moments of Random Matrices
by: V. Gorin, et al.
Published: (2018) -
On High Moments and the Spectral Norm of Large Dilute Wigner Random Matrices
by: O. Khorunzhiy
Published: (2014) -
Asymptotic of the Second Moment of the Solution of Linear Autonomous Stochastic Partial Differential Equation with External Random Perturbations
by: V. K. Yasynskyi, et al.
Published: (2017) -
On the Law of Addition of Random Matrices: Covariance of Traces of Resolvent for Random Summands
by: Vasilchuk, V.
Published: (2010) -
The Law of Multiplication of Large Random Matrices Revisited
by: Pastur, Leonid
Published: (2023)