Beyond the Gaussian
In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2011 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2011
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146791 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146791 |
|---|---|
| record_format |
dspace |
| spelling |
Fujii, K. 2019-02-11T15:17:12Z 2019-02-11T15:17:12Z 2011 Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 11D25; 11R29; 26B20; 81Q99 DOI:10.3842/SIGMA.2011.022 https://nasplib.isofts.kiev.ua/handle/123456789/146791 In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Beyond the Gaussian Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Beyond the Gaussian |
| spellingShingle |
Beyond the Gaussian Fujii, K. |
| title_short |
Beyond the Gaussian |
| title_full |
Beyond the Gaussian |
| title_fullStr |
Beyond the Gaussian |
| title_full_unstemmed |
Beyond the Gaussian |
| title_sort |
beyond the gaussian |
| author |
Fujii, K. |
| author_facet |
Fujii, K. |
| publishDate |
2011 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146791 |
| citation_txt |
Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT fujiik beyondthegaussian |
| first_indexed |
2025-11-28T02:25:05Z |
| last_indexed |
2025-11-28T02:25:05Z |
| _version_ |
1850853215439945728 |