Beyond the Gaussian

In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
1. Verfasser: Fujii, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146791
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146791
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1467912025-02-09T16:44:28Z Beyond the Gaussian Fujii, K. In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian. 2011 Article Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 11D25; 11R29; 26B20; 81Q99 DOI:10.3842/SIGMA.2011.022 https://nasplib.isofts.kiev.ua/handle/123456789/146791 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian.
format Article
author Fujii, K.
spellingShingle Fujii, K.
Beyond the Gaussian
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fujii, K.
author_sort Fujii, K.
title Beyond the Gaussian
title_short Beyond the Gaussian
title_full Beyond the Gaussian
title_fullStr Beyond the Gaussian
title_full_unstemmed Beyond the Gaussian
title_sort beyond the gaussian
publisher Інститут математики НАН України
publishDate 2011
url https://nasplib.isofts.kiev.ua/handle/123456789/146791
citation_txt Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fujiik beyondthegaussian
first_indexed 2025-11-28T02:25:05Z
last_indexed 2025-11-28T02:25:05Z
_version_ 1849999188543143936
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 7 (2011), 022, 12 pages Beyond the Gaussian Kazuyuki FUJII Department of Mathematical Sciences, Yokohama City University, Yokohama, 236-0027 Japan E-mail: fujii@yokohama-cu.ac.jp Received January 12, 2011, in final form February 28, 2011; Published online March 04, 2011 doi:10.3842/SIGMA.2011.022 Abstract. In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian. Key words: non-Gaussian integral; renormalized integral; discriminant; cubic equation 2010 Mathematics Subject Classification: 11D25; 11R29; 26B20; 81Q99 1 Introduction The Gaussian is an abbreviation of all subjects related to the Gauss function e−(px 2+qx+r) like the Gaussian beam, Gaussian process, Gaussian noise, etc. It plays a fundamental role in math- ematics, statistics, physics and related disciplines. It is generally conceived that any attempts to generalize the Gaussian results would meet formidable difficulties. Hoping to overcome this high wall of difficulties of going beyond the Gaussian in the near future, a first step was introduced in [1]. This paper is its polished version. In the paper [2] the following “formula” is reported:∫∫ e−(ax3+bx2y+cxy2+dy3)dxdy = 1 6 √ −D , (1) where D is the discriminant of the cubic equation ax3 + bx2 + cx+ d = 0, and it is given by D = b2c2 + 18abcd− 4ac3 − 4b3d− 27a2d2. (2) The formula (1) is of course non-Gaussian. However, if we consider it in the framework of the real category then (1) is not correct because the left hand side diverges. In this paper we treat only the real category, and so a, b, c, d, x, y are real numbers. Formally, by performing the change of variable x = tρ, y = ρ for (1) we have l.h.s. of (1) = ∫∫ e−ρ 3(at3+bt2+ct+d)|ρ|dtdρ = ∫ {∫ e−(at3+bt2+ct+d)ρ3 |ρ|dρ } dt = ∫ |σ|e−σ3 dσ ∫ 1∣∣ 3 √ (at3 + bt2 + ct+ d) ∣∣ 3 √ (at3 + bt2 + ct+ d) dt by the change of variable σ = 3 √ at3 + bt2 + ct+ dρ. mailto:fujii@yokohama-cu.ac.jp http://dx.doi.org/10.3842/SIGMA.2011.022 2 K. Fujii The divergence comes from∫ |σ|e−σ3 dσ, while the main part is∫ 1∣∣ 3 √ (ax3 + bx2 + cx+ d) ∣∣ 3 √ (ax3 + bx2 + cx+ d) dx under the change t→ x. As a kind of renormalization the integral may be defined like ‡ ∫∫ R2 e−(ax 3+bx2y+cxy2+dy3)dxdy ‡ = ∫ R 1∣∣ 3 √ (ax3+ bx2+ cx+ d) ∣∣ 3 √ (ax3+ bx2+ cx+ d) dx. However, the right hand side lacks proper symmetry. If we set F (a, b, c, d) = ∫∫ DR e−(ax3+bx2y+cxy2+dy3)dxdy, where DR = [−R,R]× [−R,R], then it is easy to see F (−a,−b,−c,−d) = F (a, b, c, d). Namely, F is invariant under Z2-action. This symmetry is important and must be kept even in the renormalization process. The right hand side in the “definition” above is clearly not invariant. Therefore, by modifying it slightly we reach the renormalized integral Definition 1. ‡ ∫∫ R2 e−(ax 3+bx2y+cxy2+dy3)dxdy ‡ = ∫ R 1 3 √ (ax3 + bx2 + cx+ d)2 dx. (3) We believe that the definition is not so bad (see the Section 4). In the paper we calculate the right hand side of (3) directly, which will give some interesting results and a new perspective. The result gives a mathematical reinforcement to the result [2] by Morozov and Shakirov. 2 Main result Before stating the result let us make some preparations. The Gamma function Γ(p) is defined by Γ(p) = ∫ ∞ 0 e−xxp−1dx (p > 0) (4) and the Beta function B(p, q) is B(p, q) = ∫ 1 0 xp−1(1− x)q−1dx (p, q > 0). Note that the Beta function is rewritten as B(p, q) = ∫ ∞ 0 xp−1 (1 + x)p+q dx. See [3] for more detail. Now we are in a position to state the result. Beyond the Gaussian 3 Fundamental formula. (I) For D < 0∫ R 1 3 √ (ax3 + bx2 + cx+ d)2 dx = C− 6 √ −D , (5) where C− = 3 √ 2B ( 1 2 , 1 6 ) . (II) For D > 0∫ R 1 3 √ (ax3 + bx2 + cx+ d)2 dx = C+ 6 √ D , (6) where C+ = 3B ( 1 3 , 1 3 ) . (III) C− and C+ are related by C+ = √ 3C− through the identity √ 3B ( 1 3 , 1 3 ) = 3 √ 2B ( 1 2 , 1 6 ) . (7) Our result shows that the integral depends on the sign of D, and so our question is as follows. Problem. Can the result be derived from the method developed in [2]? A comment is in order. If we treat the Gaussian case (e−(ax 2+bxy+cy2)) then the integral is reduced to∫ R 1 ax2 + bx+ c dx = 2π√ −D (8) if a > 0 and D = b2 − 4ac < 0. Noting π = √ π √ π 1 = Γ(12)Γ(12) Γ(1) = B ( 1 2 , 1 2 ) (8) should be read as∫ R 1 ax2 + bx+ c dx = 2B ( 1 2 , 1 2 ) √ −D . 3 Proof of the formula The proof is delicate. In order to prevent possible misunderstanding we present a detailed proof in this section. Proof of (I). We prove (5) in case of D < 0. First we consider the special case where a = 0 in the cubic equation ax3 + bx2 + cx + d. Namely, we calculate the integral∫ R 1 3 √ (bx2 + cx+ d)2 dx. 4 K. Fujii Noting −D = b2(4bd− c2) > 0 we obtain∫ R 1 3 √ (bx2 + cx+ d)2 dx = ∫ R 1 3 √ b2 3 √ (x2 + c bx+ d b )2 dx = 1 3 √ b2 ∫ R 1 3 √( (x+ c 2b) 2 + d b − c2 4b2 )2dx = 1 3 √ b2 ∫ R 1 3 √( x2 + 4bd−c2 4b2 )2dx T 2≡ 4bd−c2 4b2 >0 = 1 3 √ b2 ∫ R 1 3 √ (x2 + T 2)2 dx x=Ty = 1 3 √ b2 ∫ R T 3 √ T 4 3 √ (y2 + 1)2 dy = 2 3 √ b2T ∫ ∞ 0 1 3 √ (y2 + 1)2 dy y= √ x = 2 3 √ b2T ∫ ∞ 0 1 3 √ (x+ 1)2 dx 2 √ x = 1 3 √ b2T ∫ ∞ 0 x− 1 2 (x+ 1) 2 3 dx = B ( 1 2 , 1 6 ) 3 √ b2T = B ( 1 2 , 1 6 ) 6 √ b4T 2 = 3 √ 2B ( 1 2 , 1 6 ) 6 √ b2(4bd− c2) = 3 √ 2B ( 1 2 , 1 6 ) 6 √ −D . (9) Now we consider the general case of a 6= 0. From the condition D < 0 there is (only) one real root of the cubic equation ax3 + bx2 + cx+ d = 0. Let us denote it by α. From the equation ax3 + bx2 + cx+ d = (x− α)(ax2 + kx+ l), aα3 + bα2 + cα+ d = 0 we have easily b = k − aα, c = l − kα, d = −lα. (10) First we assume α = 0. In this case d = 0 and ax3 + bx2 + cx+ d = x ( ax2 + bx+ c ) . Then ∫ R 1 3 √ x2(ax2 + bx+ c)2 dx = ∫ ∞ 0 1 3 √ x2(ax2 + bx+ c)2 dx+ ∫ 0 −∞ 1 3 √ x2(ax2 + bx+ c)2 dx x= 1 y = ∫ 0 ∞ 1 3 √ 1 y2 ( a y2 + b y + c )2 ( −dy y2 ) + ∫ −∞ 0 1 3 √ 1 y2 ( a y2 + b y + c )2 ( −dy y2 ) = ∫ ∞ 0 1 3 √ (cy2 + by + a)2 dy + ∫ 0 −∞ 1 3 √ (cy2 + by + a)2 dy = ∫ R 1 3 √ (cy2 + by + a)2 dy (9) (b→c; c→b; d→a) = 3 √ 2B ( 1 2 , 1 6 ) 6 √ c2(4ac− b2) = 3 √ 2B ( 1 2 , 1 6 ) 6 √ −D . Next, let us calculate the case α 6= 0:∫ R 1 3 √ (x− α)2(ax2 + kx+ l)2 dx x=y+α = ∫ R 1 3 √ y2{a(y + α)2 + k(y + α) + l}2 dy = ∫ R 1 3 √ y2{ay2 + (2aα+ k)y + (aα2 + kα+ l)}2 dy (10) = 3 √ 2B ( 1 2 , 1 6 ) 6 √ (aα2 + kα+ l)2{4a(aα2 + kα+ l)− (2aα+ k)2} = 3 √ 2B ( 1 2 , 1 6 ) 6 √ (aα2 + kα+ l)2(4al − k2) . (11) Beyond the Gaussian 5 Key Lemma. From (10) the following equation holds( aα2 + kα+ l )2( 4al − k2 ) = 27a2d2 + 4ac3 − 18abcd− b2c2 + 4b3d = −D. (12) The proof is straightforward but tedious. Therefore, from both (11) and (12) we obtain the formula∫ R 1 3 √ (x− α)2(ax2 + kx+ l)2 dx = 3 √ 2B ( 1 2 , 1 6 ) 6 √ −D . � Proof of (II). We prove (6) in case of D > 0. Let us start with the evaluation of the following integral∫ R 1 3 √ x2(x− α)2 dx for α > 0. Then∫ R 1 3 √ x2(x− α)2 dx = ∫ 0 −∞ 1 3 √ x2(x− α)2 dx+ ∫ ∞ 0 1 3 √ x2(x− α)2 dx = ∫ ∞ 0 1 3 √ x2(x+ α)2 dx+ ∫ ∞ 0 1 3 √ x2(x− α)2 dx, (13) where the change of variable x→ −x for the first term of the right hand side was made. Each term can be evaluated elementarily:∫ ∞ 0 1 3 √ x2(x+ α)2 dx x=αt = 1 3 √ α ∫ ∞ 0 1 3 √ t2(t+ 1)2 dt = α− 1 3 ∫ ∞ 0 t− 2 3 (t+ 1) 2 3 dt = α− 1 3B ( 1 3 , 1 3 ) , while ∫ ∞ 0 1 3 √ x2(x− α)2 dx x=αt = α− 1 3 ∫ ∞ 0 1 3 √ t2(t− 1)2 dt = α− 1 3 {∫ 1 0 1 3 √ t2(t− 1)2 dt+ ∫ ∞ 1 1 3 √ t2(t− 1)2 dt } = α− 1 3 {∫ 1 0 1 3 √ t2(1− t)2 dt+ ∫ ∞ 1 1 3 √ t2(t− 1)2 dt } = 2α− 1 3 ∫ 1 0 1 3 √ t2(1− t)2 dt = 2α− 1 3 ∫ 1 0 t− 2 3 (1− t)− 2 3dt = 2α− 1 3B ( 1 3 , 1 3 ) , where we have used∫ ∞ 1 1 3 √ t2(t− 1)2 dt t= 1 s= ∫ 0 1 1 3 √ 1 s2 (1−s)2 s2 ( −ds s2 ) = ∫ 1 0 1 3 √ s2(1− s)2 ds = ∫ 1 0 1 3 √ t2(1− t)2 dt. From (13) we have∫ R 1 3 √ x2(x− α)2 dx = 3α− 1 3B ( 1 3 , 1 3 ) = 3B ( 1 3 , 1 3 ) 3 √ α . 6 K. Fujii Now we consider the special case a = 0 in the cubic equation ax3 + bx2 + cx + d. Then by D = b2(c2 − 4bd) > 0 we obtain∫ R 1 3 √ (bx2 + cx+ d)2 dx = ∫ ∞ −∞ 1 3 √{ b(x+ c 2b) 2 − c2−4bd 4b }2 dx = ∫ ∞ −∞ 1 3 √ (bx2 − c2−4bd 4b )2 dx α2= c2−4bd 4b2 >0 = 1 3 √ b2 ∫ ∞ −∞ 1 3 √ (x2 − α2)2 dx = 1 3 √ b2 ∫ ∞ −∞ 1 3 √ (x− α)2(x+ α)2 dx y=x+α = 1 3 √ b2 ∫ ∞ −∞ 1 3 √ y2(y − 2α)2 dy (13) = 1 3 √ b2 3B ( 1 3 , 1 3 ) 3 √ 2α = 3B ( 1 3 , 1 3 ) 3 √ 2αb2 = 3B ( 1 3 , 1 3 ) 6 √ 4α2b4 = 3B ( 1 3 , 1 3 ) 6 √ b2(c2 − 4bd) = 3B ( 1 3 , 1 3 ) 6 √ D . (14) Next we consider the remaining general case of a 6= 0. From the condition D > 0 there are three real solutions in the equation ax3 + bx2 + cx + d = 0. We denote one of them by α. Remember the relations b = k − aα, c = l − kα, d = −lα from the equation ax3 + bx2 + cx+ d = (x− α) ( ax2 + kx+ l ) , aα3 + bα2 + cα+ d = 0. First we assume α = 0. Then ax3 + bx2 + cx+ d = x(ax2 + bx+ c) and from D = c2(b2 − 4ac) we have∫ R 1 3 √ x2(ax2 + bx+ c)2 dx = ∫ ∞ 0 1 3 √ x2(ax2 + bx+ c)2 dx+ ∫ 0 −∞ 1 3 √ x2(ax2 + bx+ c)2 dx x= 1 y = ∫ 0 ∞ 1 3 √ 1 y2 ( a y2 + b y + c )2 ( −dy y2 ) + ∫ −∞ 0 1 3 √ 1 y2 ( a y2 + b y + c )2 ( −dy y2 ) = ∫ ∞ 0 1 3 √ (cy2 + by + a)2 dy + ∫ 0 −∞ 1 3 √ (cy2 + by + a)2 dy = ∫ R 1 3 √ (cy2 + by + a)2 dy (14) (c→b; b→c; a→d) = 3B ( 1 3 , 1 3 ) 6 √ c2(b2 − 4ac) = 3B ( 1 3 , 1 3 ) 6 √ D . (15) For the case α 6= 0 we obtain the formula∫ R 1 3 √ (x− α)2(ax2 + kx+ l)2 dx x=y+α = ∫ R 1 3 √ y2{a(y + α)2 + k(y + α) + l}2 dy = ∫ R 1 3 √ y2{ay2 + (2aα+ k)y + (aα2 + kα+ l)}2 dy (15) = 3B ( 1 3 , 1 3 ) 6 √ (aα2 + kα+ l)2{(2aα+ k)2 − 4a(aα2 + kα+ l)} = 3B ( 1 3 , 1 3 ) 6 √ (aα2 + kα+ l)2(k2 − 4al) (12) = 3B ( 1 3 , 1 3 ) 6 √ D . � Proof of (III). We prove the relation (7). Let us make some preparations. For the Gamma function (4) there are well-known formulas (see for example [3]) B(x, y) = Γ(x)Γ(y) Γ(x+ y) (x, y > 0), (16) Beyond the Gaussian 7 Γ(x)Γ(1− x) = π sin(πx) (0 < x < 1), (17) Γ (x 2 ) Γ ( x+ 1 2 ) = √ π 2x−1 Γ(x) = 21−xΓ ( 1 2 ) Γ(x). (18) (18) is called the Legendre’s relation. In the formula we set x = 2/3, then Γ ( 1 3 ) Γ ( 5 6 ) = 3 √ 2Γ ( 1 2 ) Γ ( 2 3 ) . Multiplying both sides by Γ(1/6) gives Γ ( 1 3 ) Γ ( 5 6 ) Γ ( 1 6 ) = 3 √ 2Γ ( 1 2 ) Γ ( 2 3 ) Γ ( 1 6 ) ⇐⇒ Γ ( 1 3 ) π sin(π6 ) = 3 √ 2Γ ( 1 2 ) Γ ( 1 6 ) Γ ( 2 3 ) ⇐⇒ 2πΓ ( 1 3 ) = 3 √ 2Γ ( 1 2 ) Γ ( 1 6 ) Γ ( 2 3 ) ⇐⇒ 2π Γ ( 1 3 ) Γ ( 2 3 )2 = 3 √ 2 Γ ( 1 2 ) Γ ( 1 6 ) Γ ( 2 3 ) ⇐⇒ 2π Γ ( 1 3 ) Γ ( 1 3 ) Γ ( 2 3 ) Γ ( 1 3 ) Γ ( 2 3 ) = 3 √ 2B ( 1 2 , 1 6 ) ⇐⇒ 2π Γ ( 1 3 )2 π sin(π 3 )Γ ( 2 3 ) = 3 √ 2B ( 1 2 , 1 6 ) ⇐⇒ √ 3B ( 1 3 , 1 3 ) = 3 √ 2B ( 1 2 , 1 6 ) , where we have used formulas (16) and (17) several times. The proof of (7) is now complete. � 4 Renormalized integral revisited In this section let us check whether the renormalized integral (3) is reasonable or not by making use of the results in the Section 3. In the introduction we introduced the following integral defined on DR = [−R,R]× [−R,R] F (a, b, c, d) = ∫∫ DR e−(ax3+bx2y+cxy2+dy3)dxdy. For this it is easy to see( ∂ ∂a ∂ ∂d − ∂ ∂b ∂ ∂c ) F (a, b, c, d) = ∫∫ DR ( x3 · y3 − x2y · xy2 ) e−(ax3+bx2y+cxy2+dy3)dxdy = 0,( ∂ ∂b ∂ ∂b − ∂ ∂a ∂ ∂c ) F (a, b, c, d) = ∫∫ DR ( x2y · x2y − x3 · xy2 ) e−(ax3+bx2y+cxy2+dy3)dxdy = 0, 8 K. Fujii( ∂ ∂c ∂ ∂c − ∂ ∂b ∂ ∂d ) F (a, b, c, d) = ∫∫ DR ( xy2 · xy2 − x2y · y3 ) e−(ax3+bx2y+cxy2+dy3)dxdy = 0. (19) On the other hand, if we set F(a, b, c, d) = ∫ R 1 3 √ (ax3 + bx2 + cx+ d)2 dx = C± 6 √ ±D , then we can also verify the same relations:( ∂ ∂a ∂ ∂d − ∂ ∂b ∂ ∂c ) F(a, b, c, d) = 0, ( ∂ ∂b ∂ ∂b − ∂ ∂a ∂ ∂c ) F(a, b, c, d) = 0,( ∂ ∂c ∂ ∂c − ∂ ∂b ∂ ∂d ) F(a, b, c, d) = 0. (20) Verification by hand is rather tough, but it can be done easily by use of MATHEMATICA1. From (19) and (20) we can conclude that our renormalized integral (3) is reasonable enough. 5 Discriminant In this section we make some comments on the discriminant (2). See [4] for more details ([4] is strongly recommended). For the equations f(x) = ax3 + bx2 + cx+ d, f ′(x) = 3ax2 + 2bx+ c (21) the resultant R(f, f ′) of f and f ′ is given by R(f, f ′) = ∣∣∣∣∣∣∣∣∣∣ a b c d 0 0 a b c d 3a 2b c 0 0 0 3a 2b c 0 0 0 3a 2b c ∣∣∣∣∣∣∣∣∣∣ . (22) It is easy to calculate (22) and the result becomes 1 a R(f, f ′) = 27a2d2 + 4ac3 − 18abcd− b2c2 + 4b3d = −D. On the other hand, if α, β, γ are three solutions of f(x) = 0 in (21), then the following relations are well–known α+ β + γ = − b a , αβ + αγ + βγ = c a , αβγ = −d a . From these it is easy to see α+ β + γ = − b a , α2 + β2 + γ2 = b2 − 2ac a2 , α3 + β3 + γ3 = −b 3 + 3a2d− 3abc a3 , α4 + β4 + γ4 = b4 + 4a2bd+ 2a2c2 − 4ab2c a4 . 1The author owes the calculation to Hiroshi Oike. Beyond the Gaussian 9 If we set ∆ = (α− β)(α− γ)(β − γ) the discriminant D is given by D = a4∆2. Let us calculate ∆2 directly. For the Vandermonde matrix V =  1 1 1 α β γ α2 β2 γ2  =⇒ |V | = −∆ we obtain by some manipulations of determinant ∆2 = (−|V |)2 = |V ||V T | = |V V T | = ∣∣∣∣∣∣ 3 α+ β + γ α2 + β2 + γ2 α+ β + γ α2 + β2 + γ2 α3 + β3 + γ3 α2 + β2 + γ2 α3 + β3 + γ3 α4 + β4 + γ4 ∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣ 3 − b a b2 − 2ac a2 − b a b2 − 2ac a2 −b 3 + 3a2d− 3abc a3 b2 − 2ac a2 −b 3 + 3a2d− 3abc a3 b4 + 4a2bd+ 2a2c2 − 4ab2c a4 ∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣ 3 − b a b2 − 2ac a2 2b a −2c a −3ad− bc a2 −2b2 + 2ac a2 −3ad− 3bc a2 4abd+ 2ac2 − 2b2c a3 ∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣ 3 − b a b2 − 2ac a2 2b a −2c a −3ad− bc a2 −2c a −3ad− bc a2 abd+ 2ac2 − b2c a3 ∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣ 3 − b a −2c a 2b a −2c a −3ad+ bc a2 −2c a −3ad− bc a2 −2bd+ 2c2 a2 ∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣ 3 − b a −2c a 0 2 b2 − 3ac 3a2 bc− 9ad 3a2 0 bc− 9ad 3a2 2 c2 − 3bd 3a2 ∣∣∣∣∣∣∣∣∣∣∣∣ = 3 ∣∣∣∣∣∣∣∣ 2 b2 − 3ac 3a2 bc− 9ad 3a2 bc− 9ad 3a2 2 c2 − 3bd 3a2 ∣∣∣∣∣∣∣∣ = 1 a4 −1 3 { (bc− 9ad)2 − 4(b2 − 3ac)(c2 − 3bd) } . This result is very suggestive. In fact, from the cubic equation ax3 + bx2 + cx+ d = 0 we have three data A = b2 − 3ac, B = bc− 9ad, C = c2 − 3bd, 10 K. Fujii and so if we consider the quadratic equation AX2 +BX + C = 0 then the discriminant is just B2 − 4AC. This is very interesting. Problem. Clarify the above connection. As a result we have D = −1 3 { (bc− 9ad)2 − 4(b2 − 3ac)(c2 − 3bd) } = b2c2 + 18abcd− 4ac3 − 4b3d− 27a2d2. 6 Some calculations In this section we calculate some quantities coming from the integral. The expectation value 〈x3〉 is formally given by 〈x3〉 = ∫∫ x3e−(ax3+bx2y+cxy2+dy3)dxdy∫∫ e−(ax3+bx2y+cxy2+dy3)dxdy = − ∂ ∂a log {∫∫ e−(ax3+bx2y+cxy2+dy3)dxdy } , so renormalized expectation values 〈x3〉RN, 〈x2y〉RN, 〈xy2〉RN, 〈y3〉RN are defined as Definition 2. 〈x3〉RN = − ∂ ∂a log { ‡ ∫∫ R2 e−(ax 3+bx2y+cxy2+dy3)dxdy ‡ } , 〈x2y〉RN = − ∂ ∂b log { ‡ ∫∫ R2 e−(ax 3+bx2y+cxy2+dy3)dxdy ‡ } , 〈xy2〉RN = − ∂ ∂c log { ‡ ∫∫ R2 e−(ax 3+bx2y+cxy2+dy3)dxdy ‡ } , 〈y3〉RN = − ∂ ∂d log { ‡ ∫∫ R2 e−(ax 3+bx2y+cxy2+dy3)dxdy ‡ } . From the integral forms (5) and (6) it is easy to calculate the above. Namely, we have 〈x3〉RN = 18bcd− 4c3 − 54ad2 6D , 〈x2y〉RN = 2bc2 + 18acd− 12b2d 6D , 〈xy2〉RN = 2b2c+ 18abd− 12ac2 6D , 〈y3〉RN = 18abc− 4b3 − 54a2d 6D , where D = b2c2 + 18abcd− 4ac3 − 4b3d− 27a2d2. We can calculate other quantities like 〈x5y〉RN or 〈x4y2〉RN by use of these ones, which will be left to readers. 7 Concluding remarks In this paper we calculated the non-Gaussian integral (1) in a direct manner and, moreover, calculated some renormalized expectation values. It is not clear at the present time whether these results are useful enough or not. It would be desirable to accumulate many supporting evidences. Some application(s) will be reported elsewhere [5]. Beyond the Gaussian 11 At this stage we can consider a further generalization. Namely, for the general degree n polynomial f(x) = a0x n + a1x n−1 + · · ·+ an−1x+ an the (non-Gaussian) integral becomes∫ R 1 n √ f(x)2 dx. (23) The discriminant D of the equation f(x) = 0 is given by the resultant R(f, f ′) of f and f ′ like 1 a0 R(f, f ′) = (−1) n(n−1) 2 D ⇐⇒ D = (−1) n(n−1) 2 R(f, f ′)/a0 where R(f, f ′) = ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ a0 a1 · · · an−1 an a0 a1 · · · an−1 an . . . . . . a0 a1 · · · an−1 an na0 (n− 1)a1 · · · an−1 na0 (n− 1)a1 · · · an−1 . . . . . . na0 (n− 1)a1 · · · an−1 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ , see (21) and (22). For example, for n = 4 R(f, f ′) = ∣∣∣∣∣∣∣∣∣∣∣∣∣∣ a0 a1 a2 a3 a4 0 0 0 a0 a1 a2 a3 a4 0 0 0 a0 a1 a2 a3 a4 4a0 3a1 2a2 a3 0 0 0 0 4a0 3a1 2a2 a3 0 0 0 0 4a0 3a1 2a2 a3 0 0 0 0 4a0 3a1 2a2 a3 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣ and D = 256a30a 3 4 − 4a31a 3 3 − 27a20a 4 3 − 27a41a 2 4 − 128a20a 2 2a 2 4 + a21a 2 2a 2 3 + 16a0a 4 2a4 − 4a0a 3 2a 2 3 − 4a21a 3 2a4 + 144a20a2a 2 3a4 − 6a0a 2 1a 2 3a4 + 144a0a 2 1a2a 2 4 − 192a20a1a3a 2 4 + 18a0a1a2a 3 3 + 18a31a2a3a4 − 80a0a1a 2 2a3a4, and for n = 5 R(f, f ′) = ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ a0 a1 a2 a3 a4 a5 0 0 0 0 a0 a1 a2 a3 a4 a5 0 0 0 0 a0 a1 a2 a3 a4 a5 0 0 0 0 a0 a1 a2 a3 a4 a5 5a0 4a1 3a2 2a3 a4 0 0 0 0 0 5a0 4a1 3a2 2a3 a4 0 0 0 0 0 5a0 4a1 3a2 2a3 a4 0 0 0 0 0 5a0 4a1 3a2 2a3 a4 0 0 0 0 0 5a0 4a1 3a2 2a3 a4 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ 12 K. Fujii and D = 3125a40a 4 5 − 2500a30a1a4a 3 5 − 3750a30a2a3a 3 5 + 2000a30a2a 2 4a 2 5 + 2250a30a 2 3a4a 2 5 − 1600a30a3a 3 4a5 + 256a30a 5 4 + 2000a20a 2 1a3a 3 5 − 50a20a 2 1a 2 4a 2 5 + 2250a20a1a 2 2a 3 5 − 2050a20a1a2a3a4a 2 5 + 160a20a1a2a 3 4a5 − 900a20a1a 3 3a 2 5 + 1020a20a1a 2 3a 2 4a5 − 192a20a1a3a 4 4 − 900a20a 3 2a4a 2 5 + 825a20a 2 2a 2 3a 2 5 + 560a20a 2 2a3a 2 4a5 − 128a20a 2 2a 4 4 − 630a20a2a 3 3a4a5 + 144a20a2a 2 3a 3 4 + 108a20a 5 3a5 − 27a20a 4 3a 2 4 − 1600a0a 3 1a2a 3 5 + 160a0a 3 1a3a4a 2 5− 36a0a 3 1a 3 4a5 + 1020a0a 2 1a 2 2a4a 2 5+ 560a0a 2 1a2a 2 3a 2 5− 746a0a 2 1a2a3a 2 4a5 + 144a0a 2 1a2a 4 4 + 24a0a 2 1a 3 3a4a5 − 6a0a 2 1a 2 3a 3 4 − 630a0a1a 3 2a3a 2 5 + 24a0a1a 3 2a 2 4a5 + 356a0a1a 2 2a 2 3a4a5 − 80a0a1a 2 2a3a 3 4 − 72a0a1a2a 4 3a5 + 18a0a1a2a 3 3a 2 4 + 108a0a 5 2a 2 5 − 72a0a 4 2a3a4a5 + 16a0a 4 2a 3 4 + 16a0a 3 2a 3 3a5 − 4a0a 3 2a 2 3a 2 4 + 256a51a 3 5 − 192a41a2a4a 2 5 − 128a41a 2 3a 2 5 + 144a41a3a 2 4a5 − 27a41a 4 4 + 144a31a 2 2a3a 2 5 − 6a31a 2 2a 2 4a5 − 80a31a2a 2 3a4a5 + 18a31a2a3a 3 4 + 16a31a 4 3a5 − 4a31a 3 3a 2 4 − 27a21a 4 2a 2 5 + 18a21a 3 2a3a4a5 − 4a21a 3 2a 3 4 − 4a21a 2 2a 3 3a5 + a21a 2 2a 2 3a 2 4. However, to write down the general case explicitly is not easy (almost impossible). Problem. Calculate (23) for n = 4 (and n = 5) directly. The wall called Gaussian is very high and not easy to overcome, and therefore hard work will be needed. Recently the subsequent paper [6] by Morozov and Shakirov appeared. Our works are deeply related to so-called non-linear algebras, so we will make some comments on this point in a near future. As a general introduction to them see for example [7]. The author thanks referees and Hiroshi Oike, Ryu Sasaki for many useful suggestions and comments. References [1] Fujii K., Beyond Gaussian: a comment, arXiv:0905.1363. [2] Morozov A., Shakirov Sh., Introduction to integral discriminants, J. High Energy Phys. 2009 (2009), no. 12, 002, 39 pages, arXiv:0903.2595. [3] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge University Press, Cambridge, 1996. [4] Satake I., Linear algebra, Shokabo, Tokyo, 1989 (in Japanese). [5] Fujii K., Beyond the Gaussian. II. Some applications, in progress. [6] Morozov A., Shakirov Sh., New and old results in resultant theory, Theoret. and Math. Phys. 163 (2010), 587–617, arXiv:0911.5278. [7] Dolotin V., Morozov A., Introduction to non-linear algebra, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007, hep-th/0609022. http://arxiv.org/abs/0905.1363 http://dx.doi.org/10.1088/1126-6708/2009/12/002 http://arxiv.org/abs/0903.2595 http://dx.doi.org/10.1007/s11232-010-0044-0 http://arxiv.org/abs/0911.5278 http://arxiv.org/abs/hep-th/0609022 1 Introduction 2 Main result 3 Proof of the formula 4 Renormalized integral revisited 5 Discriminant 6 Some calculations 7 Concluding remarks References