The Asymptotic Expansion of Kummer Functions for Large Values of the α-Parameter, and Remarks on a Paper by Olver
It is shown that a known asymptotic expansion of the Kummer function U(a,b,z) as a tends to infinity is valid for z on the full Riemann surface of the logarithm. A corresponding result is also proved in a more general setting considered by Olver (1956).
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2016 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2016
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147735 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The Asymptotic Expansion of Kummer Functions for Large Values of the α-Parameter, and Remarks on a Paper by Olver / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 9 назв. — англ. |