Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾
We consider q-Painlevé equations arising from birational representations of the extended affine Weyl groups of A⁽¹⁾₄- and (A₁+A₁)⁽¹⁾-types. We study their hypergeometric solutions on the level of τ functions.
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2016 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2016
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147747 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 59 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147747 |
|---|---|
| record_format |
dspace |
| spelling |
Nakazono, N. 2019-02-15T19:07:09Z 2019-02-15T19:07:09Z 2016 Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 59 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D05; 33D15; 33E17; 39A13 DOI:10.3842/SIGMA.2016.051 https://nasplib.isofts.kiev.ua/handle/123456789/147747 We consider q-Painlevé equations arising from birational representations of the extended affine Weyl groups of A⁽¹⁾₄- and (A₁+A₁)⁽¹⁾-types. We study their hypergeometric solutions on the level of τ functions. The author would like to express his sincere thanks to Dr. Milena Radnovic for her valuable comments. This research was supported by grant # DP130100967 from the Australian Research Council. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ |
| spellingShingle |
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ Nakazono, N. |
| title_short |
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ |
| title_full |
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ |
| title_fullStr |
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ |
| title_full_unstemmed |
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ |
| title_sort |
hypergeometric τ functions of the q-painlevé systems of types a⁽¹⁾₄ and (a₁+a′₁)⁽¹⁾ |
| author |
Nakazono, N. |
| author_facet |
Nakazono, N. |
| publishDate |
2016 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We consider q-Painlevé equations arising from birational representations of the extended affine Weyl groups of A⁽¹⁾₄- and (A₁+A₁)⁽¹⁾-types. We study their hypergeometric solutions on the level of τ functions.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147747 |
| citation_txt |
Hypergeometric τ Functions of the q-Painlevé Systems of Types A⁽¹⁾₄ and (A₁+A′₁)⁽¹⁾ / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 59 назв. — англ. |
| work_keys_str_mv |
AT nakazonon hypergeometricτfunctionsoftheqpainlevesystemsoftypesa14anda1a11 |
| first_indexed |
2025-11-26T00:08:36Z |
| last_indexed |
2025-11-26T00:08:36Z |
| _version_ |
1850593086654119936 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 12 (2016), 051, 23 pages
Hypergeometric τ Functions of the q-Painlevé
Systems of Types A
(1)
4 and (A1 +A′
1)
(1)
Nobutaka NAKAZONO
School of Mathematics and Statistics, The University of Sydney,
New South Wales 2006, Australia
E-mail: nobua.n1222@gmail.com
URL: http://researchmap.jp/nakazono/
Received February 01, 2016, in final form May 16, 2016; Published online May 20, 2016
http://dx.doi.org/10.3842/SIGMA.2016.051
Abstract. We consider q-Painlevé equations arising from birational representations of the
extended affine Weyl groups of A
(1)
4 - and (A1+A1)(1)-types. We study their hypergeometric
solutions on the level of τ functions.
Key words: q-Painlevé equation; basic hypergeometric function; affine Weyl group; τ func-
tion
2010 Mathematics Subject Classification: 33D05; 33D15; 33E17; 39A13
1 Introduction
1.1 Purpose
The purpose of this paper is to construct the hypergeometric τ functions associated with q-
Painlevé equations of A
(1)
4 - and A
(1)
6 -surface types in Sakai’s classification [56]. As a corollary,
we obtain the hypergeometric solutions of the corresponding q-Painlevé equations.
This work is motivated by the project to construct all possible hypergeometric τ functions
associated with the multiplicative surface types in the Sakai’s classification [56], that is, A
(1)
0 -,
A
(1)
1 -, A
(1)
2 -, A
(1)
3 -, A
(1)
4 -, A
(1)
5 - and A
(1)
6 -surface types. The corresponding symmetry groups
are W
(
E
(1)
8
)
, W̃
(
E
(1)
7
)
, W̃
(
E
(1)
6
)
, W̃
(
D
(1)
5
)
, W̃
(
A
(1)
4
)
, W̃
(
(A2 + A1)
(1)
)
and W̃
(
(A1 + A′1)
(1)
)
,
respectively. The works for W
(
E
(1)
8
)
-type [41], W̃
(
E
(1)
7
)
-type [40] and W̃
(
(A2+A1)
(1)
)
-type [43]
have been done. In this paper, we consider the hypergeometric τ functions of W̃
(
A
(1)
4
)
- and
W̃
(
(A1 +A′1)
(1)
)
-types.
1.2 Background
Discrete Painlevé equations are nonlinear ordinary difference equations of second order, which
include discrete analogues of the six Painlevé equations, and are classified by types of rational
surfaces connected to affine Weyl groups [56]. They admit particular solutions, so called hyper-
geometric solutions, which are expressible in terms of the hypergeometric type functions, when
some of the parameters take special values (see, for example, [30, 31, 33] and references therein).
Together with the Painlevé equations, discrete Painlevé equations are now regarded as one of
the most important classes of equations in the theory of integrable systems (see, e.g., [14, 35]).
It is well known that the τ functions play a crucial role in the theory of integrable systems [42],
and it is also possible to introduce them in the theory of Painlevé systems [20, 21, 22, 45, 47, 48,
49, 50]. A representation of the affine Weyl groups can be lifted on the level of the τ functions
[25, 26, 29, 32, 40, 41, 58, 59], which gives rise to various bilinear equations of Hirota type
satisfied by the τ functions.
mailto:nobua.n1222@gmail.com
http://researchmap.jp/nakazono/
http://dx.doi.org/10.3842/SIGMA.2016.051
2 N. Nakazono
Usually, the hypergeometric solutions of discrete Painlevé equations are derived by reducing
the bilinear equations to the Plücker relations by using the contiguity relations satisfied by the
entries of determinants [16, 17, 23, 27, 28, 34, 36, 37, 38, 46, 55]. This method is elementary,
but it encounters technical difficulties for discrete Painlevé equations with large symmetries. In
order to overcome this difficulty, Masuda has proposed a method of constructing hypergeometric
solutions under a certain boundary condition on the lattice where the τ functions live, so that
they are consistent with the action of the affine Weyl groups. We call such hypergeometric
solutions hypergeometric τ functions [40, 41, 43]. Although this requires somewhat complex
calculations, the merit is that it is systematic and can be applied to the systems with large
symmetries.
Some discrete Painlevé equations have been found in the studies of random matrices [11,
19, 51]. As one such example, let us consider the partition function of the Gaussian Unitary
Ensemble of an n× n random matrix:
Z(2)
n =
∫ ∞
−∞
· · ·
∫ ∞
−∞
∆(t1, . . . , tn)2
n∏
i=1
e−g1ti
2−g2ti4dti,
where g2 > 0 and ∆(t1, . . . , tn) is Vandermonde’s determinant. Letting
Rn =
Z
(2)
n+1Z
(2)
n−1(
Z
(2)
n
)2 ,
we obtain the following difference equation [11, 13, 15, 53]
Rn+1 +Rn +Rn−1 =
n
4g2
1
Rn
− g1
2g2
. (1.1)
Equation (1.1) is known as a discrete analogue of the Painlevé I equation and also as a Bäcklund
transformation of the Painlevé IV equation. The partition function Z
(2)
n corresponds to hyper-
geometric τ functions. Such relations between discrete Painlevé equations and random matrices
are well investigated. Moreover, in recent years, the relations between τ functions of Painlevé
systems and a certain class of integrable partial difference equations introduced by Adler–
Bobenko–Suris and Boll [1, 2, 8, 9, 10], which include a discrete analogue of the Korteweg–de
Vries equation, are well investigated [7, 18, 24, 25, 26]. Throughout these relations and by using
the hypergeometric τ functions, a discrete analogue of the power function was derived and its
properties, such as discrete analogue of the Riemann surface and circle packing, were shown in
[3, 4, 5, 6, 7, 44]. These results consolidate the importance of the studies of the hypergeometric
τ function for applications of Painlevé systems.
In [16, 17], the hypergeometric solutions of the q-Painlevé equations (2.32) and (3.1) (or (3.4))
are constructed by solving the minimum required bilinear equations to obtain those equations.
In this paper, we solve all bilinear equations arising from the actions of the translation subgroups
of W̃
(
A
(1)
4
)
and W̃
(
(A1 +A′1)
(1)
)
, that is, the hypergeometric τ functions given in Theorems 2.7
and 3.1 are for not only the hypergeometric solutions of the q-Painlevé equations (2.32) and (3.1)
but also those of other q-Painlevé equations, e.g., (2.33), (3.2) and (3.3) (see Corollaries 2.9
and 3.2). Moreover, as mentioned above we can derive the various integrable partial difference
equations from the τ functions of discrete Painlevé equations (see, for example, [18, 25, 26]).
Therefore, the hypergeometric τ functions constructed in this paper also give the hypergeometric
solutions of the partial difference equations appeared in [25, 26].
1.3 Plan of the paper
This paper is organized as follows: in Section 2, we first introduce τ functions with the repre-
sentation of the affine Weyl group W̃
(
A
(1)
4
)
. Next, we construct the hypergeometric τ functions
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 3
of W̃
(
A
(1)
4
)
-type (see Theorem 2.7). Finally, we obtain the hypergeometric solutions of the
q-Painlevé equations of A
(1)
4 -surface type (see Corollary 2.9). In Section 3, we summarize the
result for the W̃
(
(A1 +A′1)
(1)
)
-type (or, A
(1)
6 -surface type).
1.4 q-Special functions
We use the following conventions of q-analysis with |p|, |q| < 1 throughout this paper [12].
• q-Shifted factorials:
(a; q)n =
n−1∏
i=0
(
1− qia
)
, n = 1, 2, . . . , (a; q)∞ =
∞∏
i=0
(
1− qia
)
,
(a; p, q)∞ =
∞∏
i,j=0
(
1− qipja
)
.
• Modified Jacobi theta function:
Θ(a; q) = (a; q)∞
(
qa−1; q
)
∞.
• Elliptic gamma function:
Γ(a; p, q) =
(
pqa−1; p, q
)
∞
(a; p, q)∞
.
• Basic hypergeometric series:
sϕr
(
a1, . . . , as
b1, . . . , br
; q, z
)
=
∞∑
n=0
(a1, . . . , as; q)n
(b1, . . . , br; q)n(q; q)n
[
(−1)nqn(n−1)/2
]1+r−s
zn,
where
(a1, . . . , as; q)n =
s∏
i=1
(ai; q)n.
We note that the following formulae hold
(qna; q)∞
(a; q)∞
=
n−1∏
i=0
1
1− qia
,
Θ(qna; q)
Θ(a; q)
= (−1)n
n−1∏
i=0
1
qia
,
(qna; p, q)∞
(a; p, q)∞
=
n−1∏
i=0
1
(qia; p)∞
,
(pna; p, q)∞
(a; p, q)∞
=
n−1∏
i=0
1
(pia; q)∞
,
Γ(qna; p, q)
Γ(a; p, q)
=
n−1∏
i=0
Θ
(
qia; p
)
,
Γ(pna; p, q)
Γ(a; p, q)
=
n−1∏
i=0
Θ
(
pia; q
)
,
where n ∈ Z>0.
2 Hypergeometric τ functions of W̃
(
A
(1)
4
)
-type
In this section, we construct the hypergeometric τ functions of W̃
(
A
(1)
4
)
-type.
4 N. Nakazono
2.1 τ functions
Let us consider ten variables: τ
(j)
i (i = 1, 2, j = 1, . . . , 5) and six parameters: a0, . . . , a4, q ∈ C∗
with the following three relations for the variables
τ
(1)
2 =
a0a1
(
a3τ
(3)
1 τ
(5)
1 + a0τ
(4)
1 τ
(3)
2
)
a2a32τ
(5)
2
, (2.1a)
τ
(2)
2 =
a1a2
(
a4τ
(1)
1 τ
(4)
1 + a1τ
(5)
1 τ
(4)
2
)
a3a42τ
(1)
2
, (2.1b)
τ
(4)
2 =
a3a4
(
a1τ
(1)
1 τ
(3)
1 + a3τ
(2)
1 τ
(1)
2
)
a0a12τ
(3)
2
, (2.1c)
and the following condition for the parameters
a0a1a2a3a4 = q.
The action of the transformation group 〈s0, s1, s2, s3, s4, σ, ι〉 on the parameters is given by
si(aj) = ajai
−aij , σ(ai) = ai+1,
ι : (a0, a1, a2, a3, a4) 7→
(
a0
−1, a4
−1, a3
−1, a2
−1, a1
−1),
where i, j ∈ Z/5Z and the symmetric 5× 5 matrix
(aij)
4
i,j=0 =
2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2
is the Cartan matrix of type A
(1)
4 . Moreover, the action on the variables is given by
si
(
τ
(i+5)
1
)
= τ
(i+4)
2 , si
(
τ
(i+3)
2
)
=
ai+3ai+4
(
aiai+1τ
(i+1)
1 τ
(i+3)
1 + ai+3τ
(i+2)
1 τ
(i+1)
2
)
ai+1
2τ
(i+5)
1
, (2.2a)
si
(
τ
(i+4)
2
)
= τ
(i+5)
1 , si
(
τ
(i+5)
2
)
=
ai+4
(
ai+2τ
(i+2)
1 τ
(i+4)
1 + aiai+4τ
(i+3)
1 τ
(i+2)
2
)
aiai+1ai+2
2τ
(i+5)
1
, (2.2b)
σ
(
τ
(i)
1
)
= τ
(i+1)
1 , σ
(
τ
(i)
2
)
= τ
(i+1)
2 , (2.2c)
ι :
(
τ
(1)
1 , τ
(2)
1 , τ
(3)
1 , τ
(4)
1 , τ
(1)
2 , τ
(2)
2 , τ
(3)
2 , τ
(5)
2
)
7→
(
τ
(4)
1 , τ
(3)
1 , τ
(2)
1 , τ
(1)
1 , τ
(2)
2 , τ
(1)
2 , τ
(5)
2 , τ
(3)
2
)
, (2.2d)
where i ∈ Z/5Z. In general, for a function F = F
(
ai, τ
(k)
j
)
, we let an element w ∈ W̃
(
A
(1)
4
)
act as
w.F = F
(
w.ai, w.τ
(k)
j
)
, that is, w acts on the arguments from the left. Note that q = a0a1a2a3a4
is invariant under the action of 〈s0, s1, s2, s3, s4, σ〉.
Proposition 2.1 ([26, 58]). The group of birational transformations 〈s0, s1, s2, s3, s4, σ, ι〉, de-
noted by W̃
(
A
(1)
4
)
, forms the extended affine Weyl group of type A
(1)
4 . Namely, the transforma-
tions satisfy the fundamental relations
si
2 = 1, (sisi±1)
3 = 1, (sisj)
2 = 1, j 6= i± 1,
σ5 = 1, σsi = si+1σ, ι2 = 1, ιs0 = s0ι, ιs1 = s4ι, ιs2 = s3ι,
where i, j ∈ Z/5Z.
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 5
To iterate each variable τ
(j)
i , we need the translations Ti, i = 0, . . . , 4, defined by
T0 = σs4s3s2s1, T1 = σs0s4s3s2, T2 = σs1s0s4s3, T3 = σs2s1s0s4, (2.3a)
T4 = σs3s2s1s0. (2.3b)
The action of translations on the parameters is given by
Ti(ai) = qai, Ti(ai+1) = q−1ai+1,
where i ∈ Z/5Z. Note that Ti, i = 0, . . . , 4, commute with each other and
T0T1T2T3T4 = 1.
We define τ functions by
τ l0,l2,l3l1
= T0
l0T1
l1T2
l2T3
l3
(
τ
(3)
2
)
, (2.4)
where li ∈ Z. We note that
τ
(1)
1 = τ1,0,10 , τ
(2)
1 = τ1,0,11 , τ
(3)
1 = τ1,1,11 , τ
(4)
1 = τ1,1,21 , τ
(5)
1 = τ0,0,10 , (2.5a)
τ
(1)
2 = τ1,1,10 , τ
(2)
2 = τ1,0,21 , τ
(3)
2 = τ0,0,00 , τ
(4)
2 = τ2,1,21 , τ
(5)
2 = τ0,0,11 . (2.5b)
2.2 Hypergeometric τ functions
The aim of this section is to construct the hypergeometric τ functions of W̃
(
A
(1)
4
)
-type.
Hereinafter, we consider the τ functions τ l0,l2,l3l1
satisfying the following conditions:
(i) τ l0,l2,l3l1
satisfy the action of the translation subgroup of W̃
(
A
(1)
4
)
, 〈T0, T1, T2, T3, T4〉;
(ii) τ l0,l2,l3l1
are functions in a0, a2 and a4 consistent with the action of 〈T0, T2, T3〉, i.e., τ l0,l2,l3l1
=
τl1
(
ql0a0, q
l2a2, q
−l3a4
)
;
(iii) τ l0,l2,l3l1
satisfy the following boundary conditions:
τ l0,l2,l3l1
= 0, (2.6)
for l1 < 0;
under the conditions of parameters
a0a1 = q. (2.7)
We here call such functions τ l0,l2,l3l1
hypergeometric τ functions of W̃
(
A
(1)
4
)
-type.
From the condition (i), every τ l0,l2,l3l1
can be given by a rational function of ten variables τ
(j)
i
(or,
{
τ l0,l2,l30
}
li∈Z
and
{
τ l0,l2,l31
}
li∈Z
). Therefore, our purpose in this section is to obtain the
explicit formulae for
{
τ l0,l2,l30
}
li∈Z
and
{
τ l0,l2,l31
}
li∈Z
, satisfying the condition (ii) under the
condition (iii) and construct the closed-form expressions of
{
τ l0,l2,l3l1
}
li∈Z, l1≥2
.
Step 1. Begin by preparing the equations necessary for the construction of the hypergeo-
metric τ functions of W̃
(
A
(1)
4
)
-type. From the actions (2.2) and the definitions (2.3), the actions
of T0, T2 and T3 and their inverses on ten variables τ
(j)
i are given by the following
T0
(
τ
(4)
1
)
= τ
(4)
2 , T0
(
τ
(5)
1
)
= τ
(1)
1 , T0
(
τ
(5)
2
)
= τ
(2)
1 ,
6 N. Nakazono
T2
(
τ
(1)
1
)
= τ
(1)
2 , T2
(
τ
(2)
1
)
= τ
(3)
1 , T2
(
τ
(2)
2
)
= τ
(4)
1 ,
T3
(
τ
(2)
1
)
= τ
(2)
2 , T3
(
τ
(3)
1
)
= τ
(4)
1 , T3
(
τ
(3)
2
)
= τ
(5)
1 ,
T0
(
τ
(1)
1
)
=
qa0
2a4
(
a3τ
(1)
1 T0
(
τ
(3)
1
)
+ a0a1τ
(4)
2 T0
(
τ
(3)
2
))
a3τ
(3)
1
, (2.8a)
T0
(
τ
(2)
1
)
=
a0a1
(
qa0τ
(4)
2 T0
(
τ
(3)
2
)
+ a2a3τ
(1)
1 T0
(
τ
(3)
1
))
a32τ
(1)
2
, (2.8b)
T0
(
τ
(3)
1
)
=
a3a4
(
a0a1τ
(1)
1 τ
(3)
1 + a3τ
(2)
1 τ
(1)
2
)
a12τ
(5)
1
, (2.8c)
T0
(
τ
(1)
2
)
=
a0a1
(
qa0τ
(4)
2 T0
(
τ
(3)
2
)
+ a3τ
(1)
1 T0
(
τ
(3)
1
))
a2a32τ
(2)
1
, (2.8d)
T0
(
τ
(2)
2
)
=
a1a2
(
q−1a1τ
(1)
1 T0
(
τ
(4)
2
)
+ a4τ
(4)
2 T0
(
τ
(1)
1
))
qa3a42T0
(
τ
(1)
2
) , (2.8e)
T0
(
τ
(3)
2
)
=
a3
(
a1τ
(1)
1 τ
(3)
1 + a3a4τ
(2)
1 τ
(1)
2
)
a0a12a4τ
(4)
1
, (2.8f)
T0
(
τ
(4)
2
)
=
a3a4
(
a1T0
(
τ
(1)
1
)
T0
(
τ
(3)
1
)
+ qa3T0
(
τ
(2)
1
)
T0
(
τ
(1)
2
))
a0a12T0
(
τ
(3)
2
) , (2.8g)
T0
−1(τ (3)1
)
=
a0
(
a3τ
(3)
1 τ
(5)
1 + a0a1τ
(4)
1 τ
(3)
2
)
a1a2a32τ
(1)
1
, (2.8h)
T0
−1(τ (4)1
)
=
a3
(
qa1τ
(5)
1 T0
−1(τ (3)1
)
+ a3a4τ
(5)
2 T0
−1(τ (1)2
))
qa0a12a4τ
(3)
2
, (2.8i)
T0
−1(τ (5)1
)
=
a3a4
(
a0a1τ
(5)
1 T0
−1(τ (3)1
)
+ a3τ
(5)
2 T0
−1(τ (1)2
))
q2a12τ
(3)
1
, (2.8j)
T0
−1(τ (1)2
)
=
a0a1
(
a2a3τ
(3)
1 τ
(5)
1 + a0τ
(4)
1 τ
(3)
2
)
a32τ
(2)
1
, (2.8k)
T0
−1(τ (2)2
)
=
qa1a2
(
qa1τ
(4)
1 T0
−1(τ (5)1
)
+ a4τ
(5)
1 T0
−1(τ (4)1
))
a3a42T0
−1(τ (1)2
) , (2.8l)
T0
−1(τ (3)2
)
=
a3a4
(
qa1τ
(5)
1 T0
−1(τ (3)1
)
+ a3τ
(5)
2 T0
−1(τ (1)2
))
qa0a12τ
(4)
1
, (2.8m)
T0
−1(τ (5)2
)
=
a0a1
(
q−1a0T0
−1(τ (4)1
)
T0
−1(τ (3)2
)
+ a3T0
−1(τ (3)1
)
T0
−1(τ (5)1
))
a2a32T0
−1(τ (1)2
) , (2.8n)
T2
(
τ
(3)
1
)
=
qa2
2a1
(
a0τ
(3)
1 T2
(
τ
(5)
1
)
+ a2a3τ
(1)
2 T2
(
τ
(5)
2
))
a0τ
(5)
1
, (2.9a)
T2
(
τ
(4)
1
)
=
a2a3
(
qa2τ
(1)
2 T2
(
τ
(5)
2
)
+ a4a0τ
(3)
1 T2
(
τ
(5)
1
))
a02τ
(3)
2
, (2.9b)
T2
(
τ
(5)
1
)
=
a0a1
(
a2a3τ
(3)
1 τ
(5)
1 + a0τ
(4)
1 τ
(3)
2
)
a32τ
(2)
1
, (2.9c)
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 7
T2
(
τ
(3)
2
)
=
a2a3
(
qa2τ
(1)
2 T2
(
τ
(5)
2
)
+ a0τ
(3)
1 T2
(
τ
(5)
1
))
a4a02τ
(4)
1
, (2.9d)
T2
(
τ
(4)
2
)
=
a3a4
(
q−1a3τ
(3)
1 T2
(
τ
(1)
2
)
+ a1τ
(1)
2 T2
(
τ
(3)
1
))
qa0a12T2
(
τ
(3)
2
) , (2.9e)
T2
(
τ
(5)
2
)
=
a0
(
a3τ
(3)
1 τ
(5)
1 + a0a1τ
(4)
1 τ
(3)
2
)
a2a32a1τ
(1)
1
, (2.9f)
T2
(
τ
(1)
2
)
=
a0a1
(
a3T2
(
τ
(3)
1
)
T2
(
τ
(5)
1
)
+ qa0T2
(
τ
(4)
1
)
T2
(
τ
(3)
2
))
a2a32T2
(
τ
(5)
2
) , (2.9g)
T2
−1(τ (5)1
)
=
a2
(
a0τ
(5)
1 τ
(2)
1 + a2a3τ
(1)
1 τ
(5)
2
)
a3a4a02τ
(3)
1
, (2.9h)
T2
−1(τ (1)1
)
=
a0
(
qa3τ
(2)
1 T2
−1(τ (5)1
)
+ a0a1τ
(2)
2 T2
−1(τ (3)2
))
qa2a32a1τ
(5)
2
, (2.9i)
T2
−1(τ (2)1
)
=
a0a1
(
a2a3τ
(2)
1 T2
−1(τ (5)1
)
+ a0τ
(2)
2 T2
−1(τ (3)2
))
q2a32τ
(5)
1
, (2.9j)
T2
−1(τ (3)2
)
=
a2a3
(
a4a0τ
(5)
1 τ
(2)
1 + a2τ
(1)
1 τ
(5)
2
)
a02τ
(4)
1
, (2.9k)
T2
−1(τ (4)2
)
=
qa3a4
(
qa3τ
(1)
1 T2
−1(τ (2)1
)
+ a1τ
(2)
1 T2
−1(τ (1)1
))
a0a12T2
−1(τ (3)2
) , (2.9l)
T2
−1(τ (5)2
)
=
a0a1
(
qa3τ
(2)
1 T2
−1(τ (5)1
)
+ a0τ
(2)
2 T2
−1(τ (3)2
))
qa2a32τ
(1)
1
, (2.9m)
T2
−1(τ
(2)
2 ) =
a2a3
(
q−1a2T2
−1(τ (1)1
)
T2
−1(τ (5)2
)
+ a0T2
−1(τ (5)1
)
T2
−1(τ (2)1
))
a4a02T2
−1(τ (3)2
) , (2.9n)
T3
(
τ
(4)
1
)
=
qa3
2a2
(
a1τ
(4)
1 T3
(
τ
(1)
1
)
+ a3a4τ
(2)
2 T3
(
τ
(1)
2
))
a1τ
(1)
1
, (2.10a)
T3
(
τ
(5)
1
)
=
a3a4
(
qa3τ
(2)
2 T3
(
τ
(1)
2
)
+ a0a1τ
(4)
1 T3
(
τ
(1)
1
))
a12τ
(4)
2
, (2.10b)
T3
(
τ
(1)
1
)
=
a1a2
(
a3a4τ
(4)
1 τ
(1)
1 + a1τ
(5)
1 τ
(4)
2
)
a42τ
(3)
1
, (2.10c)
T3
(
τ
(4)
2
)
=
a3a4
(
qa3τ
(2)
2 T3
(
τ
(1)
2
)
+ a1τ
(4)
1 T3
(
τ
(1)
1
))
a0a12τ
(5)
1
, (2.10d)
T3
(
τ
(5)
2
)
=
a4a0
(
q−1a4τ
(4)
1 T3(τ
(2)
2 ) + a2τ
(2)
2 T3
(
τ
(4)
1
))
qa1a22T3
(
τ
(4)
2
) , (2.10e)
T3
(
τ
(1)
2
)
=
a1
(
a4τ
(4)
1 τ
(1)
1 + a1a2τ
(5)
1 τ
(4)
2
)
a3a42a2τ
(2)
1
, (2.10f)
T3(τ
(2)
2 ) =
a1a2
(
a4T3
(
τ
(4)
1
)
T3
(
τ
(1)
1
)
+ qa1T3
(
τ
(5)
1
)
T3
(
τ
(4)
2
))
a3a42T3
(
τ
(1)
2
) , (2.10g)
8 N. Nakazono
T3
−1(τ (1)1
)
=
a3
(
a1τ
(1)
1 τ
(3)
1 + a3a4τ
(2)
1 τ
(1)
2
)
a4a0a12τ
(4)
1
, (2.10h)
T3
−1(τ (2)1
)
=
a1
(
qa4τ
(3)
1 T3
−1(τ (1)1
)
+ a1a2τ
(3)
2 T3
−1(τ (4)2
))
qa3a42a2τ
(1)
2
, (2.10i)
T3
−1(τ (3)1
)
=
a1a2
(
a3a4τ
(3)
1 T3
−1(τ (1)1
)
+ a1τ
(3)
2 T3
−1(τ (4)2
))
q2a42τ
(1)
1
, (2.10j)
T3
−1(τ (4)2
)
=
a3a4
(
a0a1τ
(1)
1 τ
(3)
1 + a3τ
(2)
1 τ
(1)
2
)
a12τ
(5)
1
, (2.10k)
T3
−1(τ (5)2
)
=
qa4a0
(
qa4τ
(2)
1 T3
−1(τ (3)1
)
+ a2τ
(3)
1 T3
−1(τ (2)1
))
a1a22T3
−1(τ (4)2
) , (2.10l)
T3
−1(τ (1)2
)
=
a1a2
(
qa4τ
(3)
1 T3
−1(τ (1)1
)
+ a1τ
(3)
2 T3
−1(τ (4)2
))
qa3a42τ
(2)
1
, (2.10m)
T3
−1(τ (3)2
)
=
a3a4
(
q−1a3T3
−1(τ (2)1
)
T3
−1(τ (1)2
)
+ a1T3
−1(τ (1)1
)
T3
−1(τ (3)1
))
a0a12T3
−1(τ (4)2
) . (2.10n)
Moreover, by using the action of T1, we obtain the following lemma.
Lemma 2.2. The following discrete Toda type bilinear equations hold
τ l0,l2,l3l1+1 τ l0,l2,l3l1−1 = q3l1−l2−l3
a0a1
a22a3
(
−1 + q−l0+l1a1
)(
τ l0,l2,l3l1
)2
+ q4(−l0+l1)a1
4τ l0+1,l2,l3
l1
τ l0−1,l2,l3l1
, (2.11a)
τ l0,l2,l3l1+1 τ l0,l2,l3l1−1 = q−l0+4l1−l2−l3 a0a1
2
a22a3
(
1− q−l1+l2a2
)(
τ l0,l2,l3l1
)2
+ q4(l1−l2)a2
−4τ l0,l2+1,l3
l1
τ l0,l2−1,l3l1
, (2.11b)
τ l0,l2,l3l1+1 τ l0,l2,l3l1−1 = q−l0+3l1−l2 a1
a22a3a4
(
−1 + ql1−l3a0a1a4
)(
τ l0,l2,l3l1
)2
+ q4(l1−l3)a0
4a1
4a4
4τ l0,l2,l3+1
l1
τ l0,l2,l3−1l1
. (2.11c)
Proof. The actions of T0, T1
−1 and T2
−1 on τ
(1)
1 are given by
T0
(
τ
(1)
1
)
=
qa0
2a3a4
2τ
(1)
1
(
a0a1τ
(1)
1 τ
(3)
1 + a3τ
(2)
1 τ
(1)
2
)
a12τ
(3)
1 τ
(5)
1
+
qa0
2τ
(4)
2
(
a1τ
(1)
1 τ
(3)
1 + a3a4τ
(2)
1 τ
(1)
2
)
a1τ
(3)
1 τ
(4)
1
, (2.12)
T1
−1(τ (1)1
)
=
τ
(1)
2
(
a3a4τ
(1)
1 τ
(4)
1 + a1τ
(5)
1 τ
(4)
2
)
qa22a3a4τ
(3)
1 τ
(4)
1
+
a1τ
(1)
1
(
a4τ
(1)
1 τ
(4)
1 + a1a2τ
(5)
1 τ
(4)
2
)
qa23a32a42τ
(2)
1 τ
(4)
1
, (2.13)
T2
−1(τ (1)1
)
=
a2
2τ
(2)
1
(
a3a4τ
(1)
1 τ
(4)
1 + a1τ
(5)
1 τ
(4)
2
)
qa3a4τ
(3)
1 τ
(4)
1
+
a1a2
2τ
(1)
1
(
a4τ
(1)
1 τ
(4)
1 + a1τ
(5)
1 τ
(4)
2
)
qa32a42τ
(1)
2 τ
(4)
1
, (2.14)
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 9
respectively. Eliminating the terms τ
(3)
1 , τ
(4)
1 , τ
(1)
2 and τ
(4)
2 from equations (2.12) and (2.13), we
obtain
τ
(2)
1 T1
−1(τ (1)1
)
= q−1
a0a1
a22a3
(
−1 + q−1a1
)(
τ
(1)
1
)2
+ q−4a1
4T0
(
τ
(1)
1
)
τ
(5)
1 , (2.15)
which is equivalent to equation (2.11a). Furthermore, eliminating the terms τ
(3)
1 , τ
(4)
1 , τ
(5)
1
and τ
(4)
2 from equations (2.13) and (2.14), we obtain
τ
(2)
1 T1
−1(τ (1)1
)
= q−2
a0a1
2
a22a3
(1− a2)
(
τ
(1)
1
)2
+ a2
−4τ
(1)
2 T2
−1(τ (1)1
)
, (2.16)
which is equivalent to equation (2.11b). Eliminating the term τ
(2)
1 T1
−1(τ (1)1
)
from equations
(2.15) and (2.16), we obtain
T0
(
τ
(1)
1
)
τ
(5)
1 = q2
a0
a12a2a3
(−1 + a4a0a3)
(
τ
(1)
1
)2
+ a4
4a0
4a3
4τ
(1)
2 T2
−1(τ (1)1
)
. (2.17)
Applying the transformation σ on equation (2.17), we obtain
T1
(
τ
(2)
1
)
τ
(1)
1 = q2
a1
a22a3a4
(−1 + a0a1a4)
(
τ
(2)
1
)2
+ a0
4a1
4a4
4τ
(2)
2 T3
−1τ
(2)
1 ,
which is equivalent to equation (2.11c). Therefore, we have completed the proof. �
Step 2. In this step, we get the explicit formulae for τ l0,l2,l30 and τ l0,l2,l31 . Letting
τ l0,l2,l31 = τ l0,l2,l30 Hl0,l2,l3 , (2.18)
where
Hl0,l2,l3 = H
(
ql0a0, q
l2a2, q
−l3a4
)
,
we obtain the following lemma.
Lemma 2.3. A solution of the system of the equations (2.1) and (2.8)–(2.10) are given by the
solution of the following system under the condition (2.7):
τ0,0,00 τ0,1,10 +
a0a4
qa2
τ0,1,00 τ0,0,10 = 0, (2.19a)
τ0,0,00 τ1,1,10 − qa42τ0,0,10 τ1,1,00 = 0, (2.19b)
τ0,0,00 τ1,1,10 − 1
qa22
τ1,0,10 τ0,1,00 = 0, (2.19c)
τ0,0,00 τ1,1,10 − q
a02
τ0,1,10 τ1,0,00 = 0, (2.19d)
τ1,0,00 τ−1,0,00 − a0
4a4(1− qa0−1)
q3a2
(
τ0,0,00
)2
= 0, (2.19e)
τ0,1,00 τ0,−1,00 +
q2a2
3a4(1− a2)
a0
(
τ0,0,00
)2
= 0, (2.19f)
τ0,0,10 τ0,0,−10 − 1− qa4
q3a0a2a44
(
τ0,0,00
)2
= 0, (2.19g)
H0,0,0 = q2a4H1,1,0 + q(1− qa4)H1,1,1, (H01)
H0,0,0 = −q2a2a4H0,1,0 + q2a4
(
1− q−1a0
)
H1,1,0, (H02)
H0,0,0 = −q3a0−1a2a4H0,1,0 − q2a0−1
(
1− q−1a0
)
(1− qa4)H1,1,1, (H03)
10 N. Nakazono
H0,0,0 = −a0a2−1H1,0,0 − a2−1a4−1(1− qa4)H1,0,1, (H04)
H0,0,0 = −q2a0−1a2H0,1,0 − qa0−1a4−1(1− qa4)H0,1,1, (H05)
H0,0,0 = −qa0a4H1,0,0 + q2a4(1− a2)H1,1,0, (H06)
H0,0,0 = −qa0a2−1a4H1,0,0 − qa2−1(1− a2)(1− qa4)H1,1,1, (H07)
H0,0,0 = −a2−1a4−1H0,0,1 + qa2
−1(1− q−1a0)H1,0,1, (H08)
H0,0,0 = q2a0
−1H0,1,1 − q2a0−1
(
1− q−1a0
)
H1,1,1, (H09)
a4(1− a0)H2,1,1H0,0,0 = qa4H1,1,0H1,0,1 − a0a4H1,0,0H1,1,1. (H10)
Proof. By using notation (2.4) and relation (2.18), equations (2.1) and (2.8)–(2.10) can be
classified by the type of contiguity relations of function Hl0,l2,l3 (see Figs. 1–4) as the following
table:
Type Equation number
Type 1 (2.1a), (2.8d), (2.8n), (2.9g), (2.9m)
Type 2 (2.1b), (2.8c), (2.8e), (2.8j), (2.8l), (2.10b), (2.10g), (2.10k), (2.10m)
Type 3 (2.1c), (2.8g), (2.8m), (2.9e), (2.9l), (2.10d), (2.10n)
Type 4 (2.8a), (2.8h), (2.9d), (2.9f), (2.9i), (2.9n)
Type 5 (2.8b), (2.8f), (2.8i), (2.8k), (2.9c), (2.9j), (2.10a), (2.10h)
Type 6 (2.9a), (2.9h)
Type 7 (2.9b), (2.9k)
Type 8 (2.10c), (2.10j)
Type 9 (2.10f), (2.10i)
Type 10 (2.10e), (2.10l)
Under the condition (2.7), comparing the coefficients of Hl0,l2,l3 in the same types, for example
(2.1a)≡ (2.8d), and substituting the boundary condition (2.6) in equations (2.11) with l1 = 0,
we obtain equations (2.19). Moreover, by using the relations (2.19), the equations of Type 1, . . . ,
Type 10 are given by equations (H01)–(H10), respectively. Therefore, we have completed the
proof. �
We can easily verify the following lemma by the direct calculation.
Lemma 2.4. A solution of system (2.19) is given by
τ l0,l2,l30 =
(
ql0a0; q, q
)
∞
(
ql2+1a2; q, q
)
∞
(
ql3a4
−1; q, q
)
∞Kl0,l2,l3 ,
where
Kl0,l2,l3 (2.20)
=
(
Γ
(
ql0+l2+1a0a2; q, q
)
Γ
(
ql2+l3+1a2a4
−1; q, q
)
Γ
(
ql3+l0a4
−1a0; q, q
))2
Γ
(
ql0+l2+l3+1a0a2a4−1; q, q
)(
Γ
(
ql0+1/3a0; q, q
)
Γ
(
ql2+4/3a2; q, q
)
Γ
(
ql3+1/3a4−1; q, q
))6 .
We consider a solution of system of the equations (H01)–(H10). First, we get the essential
relations for the function Hl0,l2,l3 .
Lemma 2.5. If the function Hl0,l2,l3 satisfies equations (H02), (H06) and (H08) and the fol-
lowing three-term relation
qa0a4(a0 − q)H1,0,0 + (a0 − qa2 + qa0a2a4)H0,0,0 + qa2H−1,0,0 = 0, (H11)
then it also satisfies equations (H01), (H03), (H04), (H05), (H07), (H09) and (H10).
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 11
Figure 1. Left: Type 1, center: Type 2, right: directions.
Figure 2. Left: Type 3, center: Type 4, right: Type 5.
Figure 3. Left: Type 6, center: Type 7, right: Type 8.
Figure 4. Left: Type 9, right: Type 10.
Proof. Equation (H04) can be obtained by using equations (H08) and (H11) as follows. Erasing
the term H1,0,1 from equations (H08) and (H11)3, we obtain
a0a4H0,0,0 + (q − a0a4)H0,0,1 − qH−1,0,1 = 0. (H12)
We note that a subscript i of equation number means Ti-shifted corresponding equation. More-
over, erasing the term H0,0,1 from equations (H12)0 and (H08), we obtain equation (H04). This
procedure is described in Fig. 5.
12 N. Nakazono
In a similar manner, we can derive equations (H01), (H03), (H07), (H05) and (H09) as shown
in Figs. 6–10, respectively. On the other hand, we can prove equation (H10) by reducing it to
equation (H06) with equations (H02), (H04) and (H07) as shown in Fig. 11. Therefore, we have
completed the proof. �
Figure 5. Derivation of equation (H04). The black points are removed.
Figure 6. Derivation of equation (H01). Figure 7. Derivation of equation (H03).
Figure 8. Derivation of equation (H07). Figure 9. Derivation of equation (H05).
Figure 10. Derivation of equation (H09).
Figure 11. Reduction from equation (H10) to equation (H06).
Next, we solve the essential relations for the function Hl0,l2,l3 , that is, equations (H02), (H06),
(H08) and (H11).
Lemma 2.6. The solution of the system of equations (H02), (H06), (H08) and (H11) are given
by
Hl0,l2,l3 = q2/3
(
q−l0−l2−l3+2 a4
a0a2
)1/2 (
ql0−1a0
−1; q
)
∞Gl0,l2,l3 ,
where
Gl0,l2,l3 = C1q
(−2l2+l3)/2a2
−1a4
−1/2
(
q−l2+l3a2
−1a4
−1; q
)
∞(
q−l2+1a2−1; q
)
∞
Θ
(
q−l0+l2−1/2a0
−1a2; q
)
Θ
(
q−l0a0−1; q
)
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 13
× 1ϕ1
(
q−l2+1a2
−1
q−l2+l3a2
−1a4
−1; q, q
−l0+l3a0
−1a4
−1
)
+ C2q
(l2−2l3)/2a2
1/2a4
(
ql2−l3+2a2a4; q
)
∞(
q−l3+2a4; q
)
∞
Θ
(
q−l0+l3−3/2a0
−1a4
−1; q
)
Θ
(
q−l0a0−1; q
)
× 1ϕ1
(
q−l3+2a4
ql2−l3+2a2a4
; q, q−l0+l2+1a0
−1a2
)
. (2.21)
Here, Ci = Ci(l0, l2, l3), i = 1, 2, are periodic functions of period one for l0, l2, l3 ∈ Z, i.e.,
Ci(l0 + 1, l2, l3) = Ci(l0, l2 + 1, l3) = Ci(l0, l2, l3 + 1) = Ci(l0, l2, l3).
Proof. By letting
Hl0,l2,l3 = q2/3
(
q−l0−l2−l3+2 t
αβ
)1/2 (
ql0−1t−1; q
)
∞G
(
q−l0t, ql2α, ql3β
)
,
where
t = a0
−1, α = a2, β = a4
−1,
equations (H02), (H06), (H08) and (H11) can be rewritten as the following
βG(qt, α, β)− qG(t, qα, β) + q3/2αG(qt, qα, β) = 0, (2.22)
β
(
1− q2t
)
G(qt, α, β) + q3(1− α)tG(t, qα, β)− q3/2G(t, α, β) = 0, (2.23)
q1/2αG(qt, α, β)− q1/2G(t, α, qβ) + βG(qt, α, qβ) = 0, (2.24)
αβ
(
q3t− 1
)
G
(
q2t, α, β
)
−
(
q5/2αβt− q1/2(qα+ β)
)
G(qt, α, β)− q2G(t, α, β) = 0, (2.25)
respectively. Substituting
G(t, α, β) =
∞∑
n=0
cnt
n+ρ,
where cn = cn(α, β), in equation (2.25), we obtain
G(t, α, β) = A(α, β)
Θ
(
q−1/2αt; q
)
Θ(t; q)
1ϕ1
(
qα−1
α−1β
; q, βt
)
+B(α, β)
Θ
(
q−3/2βt; q
)
Θ(t; q)
1ϕ1
(
q2β−1
q2αβ−1
; q, qαt
)
, (2.26)
where A(α, β) and B(α, β) are arbitrary functions. Moreover, substituting (2.26) in equations
(2.22), (2.23) and (2.24), we obtain the following relations
A(qα, β) =
1− q−1α−1β
q
(
1− α−1
) A(α, β), A(α, qβ) =
q1/2
1− α−1β
A(α, β), (2.27a)
B(qα, β) =
q1/2
1− q2αβ−1
B(α, β), B(α, qβ) =
1− qαβ−1
q
(
1− qβ−1
)B(α, β), (2.27b)
which can be solved by
A(α, β) = α−1β1/2
(
α−1β; q
)
∞(
qα−1; q
)
∞
, B(α, β) = α1/2β−1
(
q2αβ−1; q
)
∞(
q2β−1; q
)
∞
.
14 N. Nakazono
To obtain the relations (2.27), we used the following recurrence relations of hypergeometric
series 1ϕ1:
1ϕ1
(
a
b
; q, z
)
− q + b− q2z
q
1ϕ1
(
a
b
; q, qz
)
− q2az − b
q
1ϕ1
(
a
b
; q, q2z
)
= 0,
1ϕ1
(
a
b
; q, z
)
= 1ϕ1
(
a
b
; q, qz
)
+
(a− 1)z
1− b 1ϕ1
(
qa
qb
; q, qz
)
,
1ϕ1
(
a
b
; q, z
)
=
1
1− b 1ϕ1
(
a
qb
; q, z
)
− b
1− b 1ϕ1
(
a
qb
; q, qz
)
,
which can be verified by the direct calculation. Therefore, we have completed the proof. �
Step 3. In this final step, we give the hypergeometric τ functions of W̃
(
A
(1)
4
)
-type.
Substituting
τ l0,l2,l3l1
= q2l1
3/3
(
q−l0−l2−l3+2 a4
a0a2
)l12/2 (ql0−l1a0
−1; q, q)∞
(ql0a0−1; q, q)∞
τ l0,l2,l30 Φl0,l2,l3
l1
,
in equation (2.11a), we obtain the following bilinear equation
Φl0,l2,l3
l1+1 Φl0,l2,l3
l1−1 = (Φl0,l2,l3
l1
)2 − Φl0+1,l2,l3
l1
Φl0−1,l2,l3
l1
. (2.28)
In general, equation (2.28) admits a solution expressed in terms of Jacobi–Trudi type determi-
nant
Φl0,l2,l3
l1
= det(cl0+i−j,l2,l3)i,j=1,...,l1 ,
where l1 ∈ Z>1, under the boundary conditions
Φl0,l2,l3
l1
= 0 (l1 < 0), Φl0,l2,l3
0 = 1, Φl0,l2,l3
1 = cl0,l2,l3 ,
where cl0,l2,l3 is an arbitrary function. Therefore, we obtain the following theorem.
Theorem 2.7. The hypergeometric τ functions of W̃ (A
(1)
4 )-type are given by the following
τ l0,l2,l30 =
(
ql0a0; q, q
)
∞
(
ql2+1a2; q, q
)
∞
(
ql3a4
−1; q, q
)
∞Kl0,l2,l3 ,
τ l0,l2,l3l1
= q2l1
3/3
(
q−l0−l2−l3+2 a4
a0a2
)l12/2 (ql0−l1a0−1; q, q)∞(
ql0a0−1; q, q
)
∞
τ l0,l2,l30 Φl0,l2,l3
l1
,
where l0, l2, l3 ∈ Z, l1 ∈ Z>0 and the functions
{
Φl0,l2,l3
l1
}
li∈Z, l1>0
are given by the following
l1 × l1 determinants
Φl0,l2,l3
l1
=
∣∣∣∣∣∣∣∣∣
Gl0,l2,l3 Gl0+1,l2,l3 · · · Gl0+l1−1,l2,l3
Gl0−1,l2,l3 Gl0,l2,l3 · · · Gl0+l1−2,l2,l3
...
... · · ·
...
Gl0−l1+1,l2,l3 Gl0−l1+2,l2,l3 · · · Gl0,l2,l3
∣∣∣∣∣∣∣∣∣ . (2.29)
Here, the functions Kl0,l2,l3 and Gl0,l2,l3 are given in equations (2.20) and (2.21), respectively.
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 15
2.3 Discrete Painlevé equations
Let us define the ten f -variables by
f
(j)
1 =
τ
(j+1)
1 τ
(j)
2
τ
(j)
1 τ
(j+2)
1
, f
(j)
2 =
ajaj+1
aj+3
2
τ
(j+1)
1
(
aj+2aj+3τ
(j)
1 τ
(j+3)
1 + ajτ
(j+4)
1 τ
(j+3)
2
)
τ
(j)
1 τ
(j+2)
1 τ
(j+1)
2
, (2.30)
where j ∈ Z/5Z. From the definition above and conditions (2.1), the following eight relations
hold
f
(j)
2 =
ajaj+1
(
aj+2aj+3 + ajf
(j+3)
1
)
aj+3
2f
(j+1)
1
, j ∈ Z/5Z,
a4a0
2f
(2)
1 f
(3)
1 = a2a3
(
a0 + a2f
(5)
1
)
, a0a1
2f
(3)
1 f
(4)
1 = a3a4
(
a1 + a3f
(1)
1
)
,
a2a3
2f
(5)
1 f
(1)
1 = a0a1
(
a3 + a0f
(3)
1
)
.
Therefore, the f -variables are essentially two. The action of W̃
(
A
(1)
4
)
on these variables f
(j)
i is
given by the following lemma, which follows from the actions (2.2).
Lemma 2.8. The action of W̃
(
A
(1)
4
)
on variables f
(j)
i is given by
sj
(
f
(j+3)
1
)
= f
(j+3)
2 , sj
(
f
(j+3)
2
)
= f
(j+3)
1 ,
sj
(
f
(j)
1
)
=
aj+4
ajaj+1aj+2
2
aj+2 + ajaj+4f
(j+2)
1
f
(j+4)
1
,
sj
(
f
(j+2)
2
)
=
ajaj+3aj+4
aj+1
aj+2 + ajaj+4f
(j+2)
1 + ajaj+1aj+2f
(j+4)
1
f
(j+4)
1 f
(j+3)
2
,
sj
(
f
(j+4)
2
)
=
ajaj+1aj+2
2
aj+4
f
(j+4)
1 f
(j)
1 f
(j+4)
2
aj+2 + ajaj+4f
(j+2)
1
,
sj
(
f
(j)
2
)
=
ajaj+1aj+4 + aj+3aj+4f
(j+1)
1 + ajaj+1
2aj+2f
(j+4)
1
ajaj+1aj+3f
(j+1)
1 f
(j+4)
1
,
π
(
f
(j)
i
)
= f
(j+1)
i , ι
(
f
(j)
1
)
= f
(3−j)
1 , ι
(
f
(j)
2
)
=
a2−j
(
a5−j + a2−ja3−jf
(5−j)
1
)
a3−ja4−ja5−j2f
(2−j)
1
,
where i = 1, 2 and j ∈ Z/5Z.
It is well known that the translation part of W̃
(
A
(1)
4
)
give discrete Painlevé equations [56].
Let
X
(i)
l1
= T1
l1
(
f
(i)
1
)
, Y
(i)
l1
= T1
l1
(
f
(i)
2
)
, α
(i)
l1
= T1
l1(ai) =
ql1a1 if i = 1,
q−l1a2 if i = 2,
ai otherwise.
(2.31)
The action of Ti:
Ti : (ai, ai+1) 7→
(
qai, q
−1ai+1
)
,
Ti
(
f
(i+3)
1
)
f
(i+3)
1 =
ai+3
ai2ai+1
2ai+4
(
ai+1 + ai+3ai+4f
(i+1)
1
)(
ai+1 + ai+3f
(i+1)
1
)
aiai+1 + ai+3f
(i+1)
1
,
16 N. Nakazono
Ti
−1(f (i+1)
1
)
f
(i+1)
1 =
aiai+1
3
ai+3
2
(
ai+2ai+3 + aif
(i+3)
1
)(
ai+3 + aif
(i+3)
1
)
ai+3 + aiai+1f
(i+3)
1
,
where i ∈ Z/5Z, lead a q-discrete analogue of Painlevé V equation [56]
Ti
(
X
(i+3)
l1
)
X
(i+3)
l1
=
α
(i+3)
l1(
α
(i)
l1
)2(
α
(i+1)
l1
)2
α
(i+4)
l1
×
(
α
(i+1)
l1
+ α
(i+3)
l1
α
(i+4)
l1
X
(i+1)
l1
)(
α
(i+1)
l1
+ α
(i+3)
l1
X
(i+1)
l1
)
α
(i)
l1
α
(i+1)
l1
+ α
(i+3)
l1
X
(i+1)
l1
,
Ti
−1(X(i+1)
l1
)
X
(i+1)
l1
=
α
(i)
l1
(
α
(i+1)
l1
)3(
α
(i+3)
l1
)2
(
α
(i+2)
l1
α
(i+3)
l1
+ α
(i)
l1
X
(i+3)
l1
)(
α
(i+3)
l1
+ α
(i)
l1
X
(i+3)
l1
)
α
(i+3)
l1
+ α
(i)
l1
α
(i+1)
l1
X
(i+3)
l1
. (2.32)
Moreover, the action of T
(i)
23 = Ti+2Ti+3:
T
(i)
23 : (ai+2, ai+4) 7→
(
qai+2, q
−1ai+4
)
,(
T
(i)
23
(
f
(i+2)
2
)
f
(i+3)
1 − ai+2ai+3ai+4
ai
)(
f
(i+2)
2 f
(i+3)
1 − ai+2ai+3ai+4
ai
)
=
ai+2
3ai+3ai+4
ai2
(
ai+3 + aif
(i+3)
1
)(
ai+3 + aiai+1f
(i+3)
1
)
ai+2ai+3 + aif
(i+3)
1
,(
f
(i+2)
2 f
(i+3)
1 − ai+2ai+3ai+4
ai
)(
f
(i+2)
2 T
(i)
23
−1(
f
(i+3)
1
)
− ai+2ai+3ai+4
ai
)
=
ai+2ai+3
ai2ai+1ai+4
(
ai+1ai+2ai+4 + f
(i+2)
2
)(
ai+2ai+4 + f
(i+2)
2
)
ai+2 + aif
(i+2)
2
,
where i ∈ Z/5Z, and that of T
(i)
13 = Ti+1Ti+3:
T
(i)
13 : (ai+1, ai+2, ai+3, ai+4) 7→
(
qai+1, q
−1ai+2, qai+3, q
−1ai+4
)
,(
T
(i)
13
(
f
(i+1)
1
)
f
(i+2)
1 − ai+1ai+2
ai+3ai+4
)(
f
(i+1)
1 f
(i+2)
1 − ai+1ai+2
ai+3ai+4
)
=
ai+1
3ai+2
ai+3ai+4
2
(
ai+2 + aiai+4f
(i+2)
1
)(
ai+2 + ai+4f
(i+2)
1
)
ai+1ai+2 + ai+4f
(i+2)
1
,(
f
(i+1)
1 f
(i+2)
1 − ai+1ai+2
ai+3ai+4
)(
f
(i+1)
1 T
(i)
13
−1(
f
(i+2)
1
)
− ai+1ai+2
ai+3ai+4
)
=
ai+1ai+2
aiai+3
2ai+4
2
(
ai+1 + ai+3f
(i+1)
1
)(
aiai+1 + ai+3f
(i+1)
1
)
ai+1 + ai+3ai+4f
(i+1)
1
,
where i ∈ Z/5Z, respectively give the systems(
T
(i)
23
(
Y
(i+2)
l1
)
X
(i+3)
l1
−
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
α
(i)
l1
)(
Y
(i+2)
l1
X
(i+3)
l1
−
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
α
(i)
l1
)
=
α
(i+2)
l1
3
α
(i+3)
l1
α
(i+4)
l1(
α
(i)
l1
)2
(
α
(i+3)
l1
+ α
(i)
l1
X
(i+3)
l1
)(
α
(i+3)
l1
+ α
(i)
l1
α
(i+1)
l1
X
(i+3)
l1
)
α
(i+2)
l1
α
(i+3)
l1
+ α
(i)
l1
X
(i+3)
l1
, (2.33a)
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 17(
Y
(i+2)
l1
X
(i+3)
l1
−
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
α
(i)
l1
)(
Y
(i+2)
l1
T
(i)
23
−1(
X
(i+3)
l1
)
−
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
α
(i)
l1
)
=
α
(i+2)
l1
α
(i+3)
l1(
α
(i)
l1
)2
α
(i+1)
l1
α
(i+4)
l1
(
α
(i+1)
l1
α
(i+2)
l1
α
(i+4)
l1
+ Y
(i+2)
l1
)(
α
(i+2)
l1
α
(i+4)
l1
+ Y
(i+2)
l1
)
α
(i+2)
l1
+ α
(i)
l1
Y
(i+2)
l1
, (2.33b)
and (
T
(i)
13
(
X
(i+1)
l1
)
X
(i+2)
l1
−
α
(i+1)
l1
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
)(
X
(i+1)
l1
X
(i+2)
l1
−
α
(i+1)
l1
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
)
=
(
α
(i+1)
l1
)3
α
(i+2)
l1
α
(i+3)
l1
(
α
(i+4)
l1
)2
(
α
(i+2)
l1
+ α
(i)
l1
α
(i+4)
l1
X
(i+2)
l1
)(
α
(i+2)
l1
+ α
(i+4)
l1
X
(i+2)
l1
)
α
(i+1)
l1
α
(i+2)
l1
+ α
(i+4)
l1
X
(i+2)
l1
, (2.34a)
(
X
(i+1)
l1
X
(i+2)
l1
−
α
(i+1)
l1
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
)(
X
(i+1)
l1
T
(i)
13
−1(
X
(i+2)
l1
)
−
α
(i+1)
l1
α
(i+2)
l1
α
(i+3)
l1
α
(i+4)
l1
)
=
α
(i+1)
l1
α
(i+2)
l1
α
(i)
l1
(
α
(i+3)
l1
)2(
α
(i+4)
l1
)2
(
α
(i+1)
l1
+ α
(i+3)
l1
X
(i+1)
l1
)(
α
(i)
l1
α
(i+1)
l1
+ α
(i+3)
l1
X
(i+1)
l1
)
α
(i+1)
l1
+ α
(i+3)
l1
α
(i+4)
l1
X
(i+1)
l1
. (2.34b)
Systems (2.33) and (2.34) are also known as q-discrete analogues of Painlevé V equation [57].
From equation (2.5), definitions (2.30) and (2.31) and Theorem 2.7, we obtain the following
corollary.
Corollary 2.9. Under the condition (2.7), the hypergeometric solutions of q-Painlevé equations
(2.32), (2.33) and (2.34) are given by
X
(1)
l1
= ql1+1/2
Φ1,1,1
l1
Φ1,0,1
l1+1
Φ1,0,1
l1
Φ1,1,1
l1+1
, X
(2)
l1
= − qa2
a0a4
Φ1,0,2
l1+1Φ
1,1,1
l1+1
Φ1,0,1
l1+1Φ
1,1,2
l1+1
,
X
(3)
l1
=
1− a4
ql1+1/2a0a2a42
Φ0,0,0
l1
Φ1,1,2
l1+1
Φ0,0,1
l1
Φ1,1,1
l1+1
, X
(4)
l1
= − a0a4
ql1+1/2a2
Φ0,0,1
l1
Φ2,1,2
l1+1
Φ1,0,1
l1
Φ1,1,2
l1+1
,
X
(5)
l1
=
ql1+1 − a0
q1/2
Φ1,0,1
l1
Φ0,0,1
l1+1
Φ0,0,1
l1
Φ1,0,1
l1+1
, Y
(1)
l1
=
1
q1/2a2
Φ1,0,1
l1+1Φ
2,1,2
l1+1
Φ1,0,2
l1+1Φ
1,1,1
l1+1
(
Φ0,0,1
l1
Φ1,0,1
l1
− q1/2
a4
Φ1,1,2
l1+1
Φ2,1,2
l1+1
)
,
Y
(2)
l1
=
q1/2a2a4
2
1− a4
Φ1,0,1
l1
Φ1,1,1
l1+1
Φ0,0,0
l1
Φ1,1,2
l1+1
(
Φ0,0,1
l1
Φ1,0,1
l1
+
a2
(
ql1+1 − a0
)
ql1+1/2a0a4
Φ0,0,1
l1+1
Φ1,0,1
l1+1
)
,
Y
(3)
l1
= −q
1/2a0
a4
Φ1,1,1
l1
Φ1,1,2
l1+1
Φ0,0,1
l1
Φ2,1,2
l1+1
(
Φ1,0,1
l1
Φ1,1,1
l1
+
1
q1/2a2a4
Φ1,0,1
l1+1
Φ1,1,1
l1+1
)
,
Y
(4)
l1
=
q2l1+1/2a4
a2
(
ql1+1 − a0
) Φ0,0,1
l1
Φ1,0,2
l1+1
Φ1,0,1
l1
Φ0,0,1
l1+1
(
Φ1,0,1
l1+1
Φ1,0,2
l1+1
−
Φ1,1,1
l1+1
Φ1,1,2
l1+1
)
,
Y
(5)
l1
=
a2(1− a4)
ql1
Φ1,0,1
l1
Φ1,1,2
l1+1
Φ1,1,1
l1
Φ1,0,1
l1+1
(
Φ0,0,0
l1
Φ0,0,1
l1
+
q1/2a2a4
1− a4
Φ1,1,1
l1+1
Φ1,1,2
l1+1
)
,
where the functions
{
Φl0,l2,l3
l1
}
l1∈Z≥0
are def ined by (2.29). Note that the actions of translations
Ti, i = 0, . . . , 4, on these solutions are given by the following
T0 :
(
a0, a2, a4, l1, q,Φ
l0,l2,l3
l1
)
7→
(
qa0, a2, a4, l1, q,Φ
l0+1,l2,l3
l1
)
,
18 N. Nakazono
T1 :
(
a0, a2, a4, l1, q,Φ
l0,l2,l3
l1
)
7→
(
a0, q
−1a2, a4, l1 + 1, q,Φl0,l2,l3
l1+1
)
,
T2 :
(
a0, a2, a4, l1, q,Φ
l0,l2,l3
l1
)
7→
(
a0, qa2, a4, l1, q,Φ
l0,l2+1,l3
l1
)
,
T3 :
(
a0, a2, a4, l1, q,Φ
l0,l2,l3
l1
)
7→
(
a0, a2, q
−1a4, l1, q,Φ
l0,l2,l3+1
l1
)
,
T4 :
(
a0, a2, a4, l1, q,Φ
l0,l2,l3
l1
)
7→
(
q−1a0, a2, qa4, l1 − 1, q,Φl0−1,l2−1,l3−1
l1−1
)
.
3 Hypergeometric τ functions of W̃
(
(A1 +A′
1)
(1)
)
-type
In this section, we construct the hypergeometric τ functions of W̃
(
(A1 +A′1)
(1)
)
-type.
3.1 τ functions
The action of the transformation group W̃
(
(A1 + A′1)
(1)
)
= 〈s0, s1, w0, w1, π〉 on the parame-
ters a0, a1 and b are given by
s0 : (a0, a1, b) 7→
(
1
a0
, a0
2a1,
b
a0
)
, s1 : (a0, a1, b) 7→
(
a0a1
2,
1
a1
, a1b
)
,
w0 : (a0, a1, b) 7→
(
1
a0
,
1
a1
,
b
a0
)
, w1 : (a0, a1, b) 7→
(
1
a0
,
1
a1
,
b
a02a1
)
,
π : (a0, a1, b) 7→
(
1
a1
,
1
a0
,
b
a0a1
)
,
while its actions on the variables τi, i = −3, . . . , 3, are given by
s0 : (τ−3, τ−1, τ1) 7→
(
a0τ1τ−2
2 + τ−1τ0τ−2 + τ−3τ0
2
a0τ−1τ1
,
a0τ0
2 + bτ−2τ2
a0τ1
,
bτ−2τ2 + τ0
2
τ−1
)
,
s1 : (τ−2, τ0) 7→
(
a0a1τ−1
2 + bτ−3τ1
a0a1τ0
,
a0τ−1
2 + bτ−3τ1
a0τ−2
)
,
w0 : (τ−3, τ−2, τ−1, τ1) 7→ (τ3, τ2, τ1, τ−1) ,
w1 : (τ−3, τ−2, τ0, τ1) 7→ (τ1, τ0, τ−2, τ−3) ,
π : (τ−3, τ−2, τ−1, τ0, τ1) 7→ (τ2, τ1, τ0, τ−1, τ−2) ,
where
τ2 =
a0 (τ−1τ0 + τ−2τ1)
bτ−3
, τ3 =
τ0τ1 + τ−1τ2
bτ−2
.
For each element w ∈ W̃
(
(A1 + A′1)
(1)
)
and function F = F (ai, b, τj), we use the notation w.F
to mean w.F = F (w.ai, w.b, w.τj), that is, w acts on the arguments from the left. We note that
the group of transformations W̃
(
(A1 + A′1)
(1)
)
forms the extended affine Weyl group of type
(A1 +A1)
(1) [25]. Namely, the transformations satisfy the fundamental relations
s0
2 = s1
2 = (s0s1)
∞ = 1, w0
2 = w1
2 = (w0w1)
∞ = 1,
π2 = 1, πs0 = s1π, πw0 = w1π,
and the action of W
(
A
(1)
1
)
= 〈s0, s1〉 and that of W
(
A
(1)
1
′) = 〈w0, w1〉 commute. We note that
the relation (ww′)∞ = 1 for transformations w and w′ means that there is no positive integer N
such that (ww′)N = 1.
To iterate each variable τi, we need the translations Ti, i = 1, 2, 3, defined by
T1 = w0w1, T2 = πs1w0, T3 = πs0w0.
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 19
Note that Ti, i = 1, 2, 3, commute with each other and T1T2T3 = 1. The actions of these on the
parameters are given by
T1 : (a0, a1, b) 7→ (a0, a1, qb), T2 : (a0, a1, b) 7→
(
qa0, q
−1a1, b
)
,
T3 : (a0, a1, b) 7→
(
q−1a0, qa1, q
−1b
)
,
where the parameter q = a0a1 is invariant under the action of translations. We define τ functions
by
τ l1l2 = T1
l1T2
l2(τ−3),
where l1, l2 ∈ Z. We note that
τ−3 = τ00 , τ−2 = τ11 , τ−1 = τ10 , τ0 = τ21 , τ1 = τ20 , τ2 = τ31 , τ3 = τ30 .
3.2 Discrete Painlevé equations
Let
f0 =
τ−2τ1
τ−1τ0
, f1 =
τ−3τ0
τ−2τ−1
, f2 =
(τ−1)
2
τ−3τ1
,
where
f0f1f2 = 1.
The action of W̃
(
(A1 +A′1)
(1)
)
on the variables fi, i = 0, 1, 2, is given by
s0 : (f0, f1, f2) 7→
(
f0(a0f0 + a0 + f1)
f0 + f1 + 1
,
f1(a0f0 + f1 + 1)
a0(f0 + f1 + 1)
,
a0f2(f0 + f1 + 1)2
(a0f0 + a0 + f1)(a0f0 + f1 + 1)
)
,
s1 : (f0, f1) 7→
(
f0(a0a1 + bf0f1)
a1(a0 + bf0f1)
,
a1f1(a0 + bf0f1)
a0a1 + bf0f1
)
,
w0 : (f0, f1, f2) 7→
(
a0(f0 + 1)
bf0f1
,
a0f0 + a0 + bf0f1
a0bf0(f0 + 1)
,
b2f0
f2(a0f0 + a0 + bf0f1)
)
,
w1 : (f0, f1) 7→ (f1, f0) ,
π : (f1, f2) 7→
(
a0(f0 + 1)
bf0f1
,
bf1
a0(f0 + 1)
)
.
By letting
f
(0)
l2
= T2
l2(f0), f
(1)
l2
= T2
l2(f1), f
(2)
l2
= T2
l2(f2),
the actions of Ti, i = 1, 2, 3:
T1(f1)f1 =
a0(f0 + 1)
bf0
, T1(f0)f0 =
T1(f1) + 1
bT1(f1)
,
T2(f2)f2 =
b
qf1(f1 + 1)
, T2(f1)f1 =
a0(b+ qT2(f2))
T2(f2)(qa0T2(f2) + b)
,
T3(f0)f0 =
a1b+ qf2
f2(b+ qf2)
, T3(f2)f2 =
a1b
qT3(f0)(T3(f0) + 1)
,
20 N. Nakazono
lead the following q-Painlevé equations
T1
(
f
(1)
l2
)
f
(1)
l2
=
ql2a0
(
f
(0)
l2
+ 1
)
bf
(0)
l2
, T1
(
f
(0)
l2
)
f
(0)
l2
=
T1
(
f
(1)
l2
)
+ 1
bT1
(
f
(1)
l2
) , (3.1)
T2
(
f
(2)
l2
)
f
(2)
l2
=
b
qf
(1)
l2
(
f
(1)
l2
+ 1
) , T2
(
f
(1)
l2
)
f
(1)
l2
=
ql2a0
(
b+ qT2
(
f
(2)
l2
))
T2
(
f
(2)
l2
)(
ql2+1a0T2
(
f
(2)
l2
)
+ b
) , (3.2)
T3
(
f
(0)
l2
)
f
(0)
l2
=
a1b+ ql2+1f
(2)
l2
ql2f
(2)
l2
(
b+ qf
(2)
l2
) , T3
(
f
(2)
l2
)
f
(2)
l2
=
a1b
ql2+1T3
(
f
(0)
l2
)(
T3
(
f
(0)
l2
)
+ 1
) . (3.3)
We note that equation (3.1) is known as a q-discrete analogue of Painlevé II equation [39] and
can be rewritten as the following single second-order ordinary difference equation [52, 54, 56]:(
T1
(
f
(0)
l2
)
f
(0)
l2
− 1
b
)(
T1
−1(f (0)l2
)
f
(0)
l2
− q
b
)
=
a1
ql2b
f
(0)
l2
1 + f
(0)
l2
. (3.4)
3.3 Hypergeometric τ functions
We here define hypergeometric τ functions of W̃
(
(A1+A′1)
(1)
)
-type by τ l1l2 satisfying the following
conditions:
(i) τ l1l2 satisfy the action of the translation subgroup of W̃
(
(A1 +A′1)
(1)
)
, 〈T1, T2, T3〉;
(ii) τ l1l2 are functions in b consistent with the action of T1, i.e., τ l1l2 = τl2(ql1b);
(iii) τ l1l2 satisfy the following boundary conditions: τ l1l2 = 0, for l2 < 0;
under the conditions of parameters
a0 = 1, a1 = q. (3.5)
In a similar manner as Section 2.2, we obtain the following theorem.
Theorem 3.1. The hypergeometric τ functions of W̃
(
(A1 + A′1)
(1)
)
-type are given by the fol-
lowing
τ l10 = Γ
(
ql1b; q, q
)
, τ l1l2 =
Γ
(
ql1b; q, q
)
Θ
(
ql1b; q
)l2 ψl1l2 ,
where l1 ∈ Z, l2 ∈ Z>0 and the functions
{
ψl1l2
}
l1∈Z, l2∈Z>0
are given by the following l2 × l2
determinants
ψl1l2 =
∣∣∣∣∣∣∣∣∣
Fl1 Fl1+1 · · · Fl1+l2−1
Fl1−1 Fl1 · · · Fl1+l2−2
...
...
. . .
...
Fl1−l2+1 Fl1−l2+2 · · · Fl1
∣∣∣∣∣∣∣∣∣ .
Here, the function Fn is given by
Fn =
Θ
(
−q(2n−3)/4b1/2; q1/2
)
qnb
(
An 1ϕ1
(
0
−q1/2; q
1/2,−q(2n−5)/4b1/2
)
+Bne
πi log b/ log q
1ϕ1
(
0
−q1/2; q
1/2, q(2n−5)/4b1/2
))
,
where An and Bn are periodic functions of period one with respect to n, that is,
An+1 = An, Bn+1 = Bn.
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 21
Moreover, Theorem 3.1 leads the following corollary.
Corollary 3.2. Under the condition (3.5), the hypergeometric solutions of q-Painlevé equations
(3.1)–(3.4) are given by
f
(0)
l2
= − 1
qb
ψ1
l2+1ψ
2
l2
ψ1
l2
ψ2
l2+1
, f
(1)
l2
= ql2+1
ψ0
l2
ψ2
l2+1
ψ1
l2+1ψ
1
l2
, f
(2)
l2
= − b
ql2
(ψ1
l2
)2
ψ0
l2
ψ2
l2
.
Note that the actions of translations Ti, i = 1, 2, 3, on these solutions are given by the following
T1 :
(
b, q, ψl1l2
)
7→
(
qb, q, ψl1+1
l2
)
, T2 :
(
b, q, ψl1l2
)
7→
(
b, q, ψl1l2+1
)
,
T3 :
(
b, q, ψl1l2
)
7→
(
q−1b, q, ψl1−1l2−1
)
.
Acknowledgements
The author would like to express his sincere thanks to Dr. Milena Radnovic for her valuable
comments. This research was supported by grant # DP130100967 from the Australian Research
Council.
References
[1] Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consis-
tency approach, Comm. Math. Phys. 233 (2003), 513–543, nlin.SI/0202024.
[2] Adler V.E., Bobenko A.I., Suris Yu.B., Discrete nonlinear hyperbolic equations: classification of integrable
cases, Funct. Anal. Appl. 43 (2009), 3–17, arXiv:0705.1663.
[3] Agafonov S.I., Discrete zγ : embedded circle patterns with the square grid combinatorics and discrete
Painlevé equations, Theoret. and Math. Phys. 134 (2003), 3–13, nlin.SI/0110030.
[4] Agafonov S.I., Imbedded circle patterns with the combinatorics of the square grid and discrete Painlevé
equations, Discrete Comput. Geom. 29 (2003), 305–319.
[5] Agafonov S.I., Bobenko A.I., Discrete Zγ and Painlevé equations, Int. Math. Res. Not. 2000 (2000), 165–
193, solv-int/9909002.
[6] Agafonov S.I., Bobenko A.I., Hexagonal circle patterns with constant intersection angles and discrete
Painlevé and Riccati equations, J. Math. Phys. 44 (2003), 3455–3469, math.CV/0301282.
[7] Ando H., Hay M., Kajiwara K., Masuda T., An explicit formula for the discrete power function associated
with circle patterns of Schramm type, Funkcial. Ekvac. 57 (2014), 1–41, arXiv:1105.1612.
[8] Boll R., Classification of 3D consistent quad-equations, J. Nonlinear Math. Phys. 18 (2011), 337–365,
arXiv:1009.4007.
[9] Boll R., Corrigendum: Classification of 3D consistent quad-equations, J. Nonlinear Math. Phys. 19 (2012),
618–620.
[10] Boll R., Classification and Lagrangian structure of 3D consistent quad-equations, Ph.D. Thesis, Technische
Universität Berlin, 2012.
[11] Brézin É., Kazakov V.A., Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990), 144–150.
[12] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications,
Vol. 96, 2nd ed., Cambridge University Press, Cambridge, 2004.
[13] Grammaticos B., Ohta Y., Ramani A., Sakai H., Degeneration through coalescence of the q-Painlevé VI
equation, J. Phys. A: Math. Gen. 31 (1998), 3545–3558.
[14] Grammaticos B., Ramani A., Discrete Painlevé equations: a review, in Discrete Integrable Systems, Lecture
Notes in Phys., Vol. 644, Springer, Berlin, 2004, 245–321.
[15] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys.
Rev. Lett. 67 (1991), 1825–1828.
[16] Hamamoto T., Kajiwara K., Hypergeometric solutions to the q-Painlevé equation of type A
(1)
4 , J. Phys. A:
Math. Theor. 40 (2007), 12509–12524, nlin.SI/0701001.
http://dx.doi.org/10.1007/s00220-002-0762-8
http://arxiv.org/abs/nlin.SI/0202024
http://dx.doi.org/10.1007/s10688-009-0002-5
http://arxiv.org/abs/0705.1663
http://dx.doi.org/10.1023/A:1021807404288
http://arxiv.org/abs/nlin.SI/0110030
http://dx.doi.org/10.1007/s00454-002-0761-8
http://dx.doi.org/10.1155/S1073792800000118
http://arxiv.org/abs/solv-int/9909002
http://dx.doi.org/10.1063/1.1586966
http://arxiv.org/abs/math.CV/0301282
http://dx.doi.org/10.1619/fesi.57.1
http://arxiv.org/abs/1105.1612
http://dx.doi.org/10.1142/S1402925111001647
http://arxiv.org/abs/1009.4007
http://dx.doi.org/10.1016/0370-2693(90)90818-Q
http://dx.doi.org/10.1017/CBO9780511526251
http://dx.doi.org/10.1088/0305-4470/31/15/018
http://dx.doi.org/10.1007/978-3-540-40357-9_7
http://dx.doi.org/10.1007/978-3-540-40357-9_7
http://dx.doi.org/10.1103/PhysRevLett.67.1825
http://dx.doi.org/10.1103/PhysRevLett.67.1825
http://dx.doi.org/10.1088/1751-8113/40/42/S01
http://dx.doi.org/10.1088/1751-8113/40/42/S01
http://arxiv.org/abs/nlin.SI/0701001
22 N. Nakazono
[17] Hamamoto T., Kajiwara K., Witte N.S., Hypergeometric solutions to the q-Painlevé equation of type (A1 +
A′1)(1), Int. Math. Res. Not. 2006 (2006), 84619, 26 pages, nlin.SI/0607065.
[18] Hay M., Kajiwara K., Masuda T., Bilinearization and special solutions to the discrete Schwarzian KdV
equation, J. Math-for-Ind. 3A (2011), 53–62, arXiv:1102.1829.
[19] Itzykson C., Zuber J.B., The planar approximation. II, J. Math. Phys. 21 (1980), 411–421.
[20] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with ra-
tional coefficients. II, Phys. D 2 (1981), 407–448.
[21] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with ra-
tional coefficients. III, Phys. D 4 (1981), 26–46.
[22] Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations
with rational coefficients. I. General theory and τ -function, Phys. D 2 (1981), 306–352.
[23] Joshi N., Kajiwara K., Mazzocco M., Generating function associated with the Hankel determinant formula
for the solutions of the Painlevé IV equation, Funkcial. Ekvac. 49 (2006), 451–468, nlin.SI/0512041.
[24] Joshi N., Nakazono N., Lax pairs of discrete Painlevé equations: (A2 +A1)(1) case, arXiv:1503.04515.
[25] Joshi N., Nakazono N., Shi Y., Lattice equations arising from discrete Painlevé systems. I. (A2 +A1)(1) and
(A1 +A′1)(1) cases, J. Math. Phys. 56 (2015), 092705, 25 pages, arXiv:1401.7044.
[26] Joshi N., Nakazono N., Shi Y., Lattice equations arising from discrete Painlevé systems. II. A
(1)
4 case,
arXiv:1603.09414.
[27] Kajiwara K., Kimura K., On a q-difference Painlevé III equation. I. Derivation, symmetry and Riccati type
solutions, J. Nonlinear Math. Phys. 10 (2003), 86–102, nlin.SI/0205019.
[28] Kajiwara K., Masuda T., A generalization of determinant formulae for the solutions of Painlevé II
and XXXIV equations, J. Phys. A: Math. Gen. 32 (1999), 3763–3778, solv-int/9903014.
[29] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., 10E9 solution to the elliptic Painlevé equation,
J. Phys. A: Math. Gen. 36 (2003), L263–L272, nlin.SI/0303032.
[30] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Hypergeometric solutions to the q-Painlevé
equations, Int. Math. Res. Not. 2004 (2004), 2497–2521, nlin.SI/0403036.
[31] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Construction of hypergeometric solutions to the
q-Painlevé equations, Int. Math. Res. Not. 2005 (2005), 1439–1463, nlin.SI/0501051.
[32] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Point configurations, Cremona transformations
and the elliptic difference Painlevé equation, in Théories asymptotiques et équations de Painlevé, Sémin.
Congr., Vol. 14, Soc. Math. France, Paris, 2006, 169–198, nlin.SI/0411003.
[33] Kajiwara K., Nakazono N., Hypergeometric solutions to the symmetric q-Painlevé equations, Int. Math.
Res. Not. 2015 (2015), 1101–1140, arXiv:1304.0858.
[34] Kajiwara K., Noumi M., Yamada Y., A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen.
34 (2001), 8563–8581, nlin.SI/0012063.
[35] Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, arXiv:1509.08186.
[36] Kajiwara K., Ohta Y., Determinant structure of the rational solutions for the Painlevé IV equation,
J. Phys. A: Math. Gen. 31 (1998), 2431–2446, solv-int/9709011.
[37] Kajiwara K., Ohta Y., Satsuma J., Casorati determinant solutions for the discrete Painlevé III equation,
J. Math. Phys. 36 (1995), 4162–4174, solv-int/9412004.
[38] Kajiwara K., Ohta Y., Satsuma J., Grammaticos B., Ramani A., Casorati determinant solutions for the
discrete Painlevé-II equation, J. Phys. A: Math. Gen. 27 (1994), 915–922, solv-int/9310002.
[39] Kruskal M.D., Tamizhmani K.M., Grammaticos B., Ramani A., Asymmetric discrete Painlevé equations,
Regul. Chaotic Dyn. 5 (2000), 273–280.
[40] Masuda T., Hypergeometric τ -functions of the q-Painlevé system of type E
(1)
7 , SIGMA 5 (2009), 035,
30 pages, arXiv:0903.4102.
[41] Masuda T., Hypergeometric τ -functions of the q-Painlevé system of type E
(1)
8 , Ramanujan J. 24 (2011),
1–31.
[42] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras,
Cambridge Tracts in Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2000.
[43] Nakazono N., Hypergeometric τ functions of the q-Painlevé systems of type (A2 +A1)(1), SIGMA 6 (2010),
084, 16 pages, arXiv:1008.2595.
http://dx.doi.org/10.1155/IMRN/2006/84619
http://arxiv.org/abs/nlin.SI/0607065
http://arxiv.org/abs/1102.1829
http://dx.doi.org/10.1063/1.524438
http://dx.doi.org/10.1016/0167-2789(81)90021-X
http://dx.doi.org/10.1016/0167-2789(81)90003-8
http://dx.doi.org/10.1016/0167-2789(81)90013-0
http://dx.doi.org/10.1619/fesi.49.451
http://arxiv.org/abs/nlin.SI/0512041
http://arxiv.org/abs/1503.04515
http://dx.doi.org/10.1063/1.4931481
http://arxiv.org/abs/1401.7044
http://arxiv.org/abs/1603.09414
http://dx.doi.org/10.2991/jnmp.2003.10.1.7
http://arxiv.org/abs/nlin.SI/0205019
http://dx.doi.org/10.1088/0305-4470/32/20/309
http://arxiv.org/abs/solv-int/9903014
http://dx.doi.org/10.1088/0305-4470/36/17/102
http://arxiv.org/abs/nlin.SI/0303032
http://dx.doi.org/10.1155/S1073792804140919
http://arxiv.org/abs/nlin.SI/0403036
http://dx.doi.org/10.1155/IMRN.2005.1439
http://arxiv.org/abs/nlin.SI/0501051
http://arxiv.org/abs/nlin.SI/0411003
http://dx.doi.org/10.1093/imrn/rnt237
http://dx.doi.org/10.1093/imrn/rnt237
http://arxiv.org/abs/1304.0858
http://dx.doi.org/10.1088/0305-4470/34/41/312
http://arxiv.org/abs/nlin.SI/0012063
http://arxiv.org/abs/1509.08186
http://dx.doi.org/10.1088/0305-4470/31/10/017
http://arxiv.org/abs/solv-int/9709011
http://dx.doi.org/10.1063/1.531353
http://arxiv.org/abs/solv-int/9412004
http://dx.doi.org/10.1088/0305-4470/27/3/030
http://arxiv.org/abs/solv-int/9310002
http://dx.doi.org/10.1070/rd2000v005n03ABEH000149
http://dx.doi.org/10.3842/SIGMA.2009.035
http://arxiv.org/abs/0903.4102
http://dx.doi.org/10.1007/s11139-010-9262-1
http://dx.doi.org/10.3842/SIGMA.2010.084
http://arxiv.org/abs/1008.2595
Hypergeometric τ Functions of the q-Painlevé Systems of Types A
(1)
4 and (A1 +A′1)
(1) 23
[44] Nijhoff F.W., Ramani A., Grammaticos B., Ohta Y., On discrete Painlevé equations associated with the
lattice KdV systems and the Painlevé VI equation, Stud. Appl. Math. 106 (2001), 261–314, solv-int/9812011.
[45] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, Vol. 223,
Amer. Math. Soc., Providence, RI, 2004.
[46] Ohta Y., Nakamura A., Similarity KP equation and various different representations of its solutions, J. Phys.
Soc. Japan 61 (1992), 4295–4313.
[47] Okamoto K., Studies on the Painlevé equations. I. Sixth Painlevé equation PVI, Ann. Mat. Pura Appl. 146
(1987), 337–381.
[48] Okamoto K., Studies on the Painlevé equations. II. Fifth Painlevé equation PV, Japan. J. Math. (N.S.) 13
(1987), 47–76.
[49] Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV,
Math. Ann. 275 (1986), 221–255.
[50] Okamoto K., Studies on the Painlevé equations. IV. Third Painlevé equation PIII, Funkcial. Ekvac. 30
(1987), 305–332.
[51] Periwal V., Shevitz D., Unitary-matrix models as exactly solvable string theories, Phys. Rev. Lett. 64 (1990),
1326–1329.
[52] Ramani A., Grammaticos B., Discrete Painlevé equations: coalescences, limits and degeneracies, Phys. A
228 (1996), 160–171, solv-int/9510011.
[53] Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67
(1991), 1829–1832.
[54] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function solutions of the discrete
Painlevé equations, Comput. Math. Appl. 42 (2001), 603–614.
[55] Sakai H., Casorati determinant solutions for the q-difference sixth Painlevé equation, Nonlinearity 11 (1998),
823–833.
[56] Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations,
Comm. Math. Phys. 220 (2001), 165–229.
[57] Tamizhmani K.M., Grammaticos B., Carstea A.S., Ramani A., The q-discrete Painlevé IV equations and
their properties, Regul. Chaotic Dyn. 9 (2004), 13–20.
[58] Tsuda T., Tau functions of q-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006), 39–47.
[59] Tsuda T., Masuda T., q-Painlevé VI equation arising from q-UC hierarchy, Comm. Math. Phys. 262 (2006),
595–609.
http://dx.doi.org/10.1111/1467-9590.00167
http://arxiv.org/abs/solv-int/9812011
http://dx.doi.org/10.1143/JPSJ.61.4295
http://dx.doi.org/10.1143/JPSJ.61.4295
http://dx.doi.org/10.1007/BF01762370
http://dx.doi.org/10.1007/BF01458459
http://dx.doi.org/10.1103/PhysRevLett.64.1326
http://dx.doi.org/10.1016/0378-4371(95)00439-4
http://arxiv.org/abs/solv-int/9510011
http://dx.doi.org/10.1103/PhysRevLett.67.1829
http://dx.doi.org/10.1016/S0898-1221(01)00180-8
http://dx.doi.org/10.1088/0951-7715/11/4/004
http://dx.doi.org/10.1007/s002200100446
http://dx.doi.org/10.1070/RD2004v009n01ABEH000260
http://dx.doi.org/10.1007/s11005-005-0037-3
http://dx.doi.org/10.1007/s00220-005-1461-z
1 Introduction
1.1 Purpose
1.2 Background
1.3 Plan of the paper
1.4 q-Special functions
2 Hypergeometric functions of W"0365W(to.A4(1))to.-type
2.1 functions
2.2 Hypergeometric functions
2.3 Discrete Painlevé equations
3 Hypergeometric functions of W"0365W(to.(A1+A1')(1))to.-type
3.1 functions
3.2 Discrete Painlevé equations
3.3 Hypergeometric functions
References
|