Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds
Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton-Jacobi equation by means of the eigenvalues of m ≤ n Killing two-tensors. Moreover, from the analysis of the eigenvalues, informat...
Збережено в:
| Дата: | 2007 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2007
|
| Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147786 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds / C. Chanu, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton-Jacobi equation by means of the eigenvalues of m ≤ n Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the L-systems is provided. |
|---|