A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog

Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the cur...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Authors: Cariñena, J.F., Rañada, M.F., Santander, M.
Format: Article
Language:English
Published: Інститут математики НАН України 2007
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147830
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog / J.F. Cariñena, M.F. Rañada, M. Santander // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Two super-integrable and super-separable classical systems which can be considered as deformations of the harmonic oscillator and the Smorodinsky-Winternitz in two dimensions are studied and identified with motions in spaces of constant curvature, the deformation parameter being related with the curvature. In this sense these systems are to be considered as a harmonic oscillator and a Smorodinsky-Winternitz system in such bi-dimensional spaces of constant curvature. The quantization of the first system will be carried out and it is shown that it is super-solvable in the sense that the Schrödinger equation reduces, in three different coordinate systems, to two separate equations involving only one degree of freedom.