Some Remarks on Very-Well-Poised ₈∅₇ Series
Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities...
Gespeichert in:
| Datum: | 2012 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2012
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148446 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Some Remarks on Very-Well-Poised ₈∅₇ Series / J.V. Stokman // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Nonpolynomial basic hypergeometric eigenfunctions of the Askey-Wilson second order difference operator are known to be expressible as very-well-poised ₈∅₇ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ₈∅₇ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker-Akhiezer functions. |
|---|