Orbit Representations from Linear mod 1 Transformations
We show that every point x0∈[0,1] carries a representation of a C∗-algebra that encodes the orbit structure of the linear mod 1 interval map fβ,α(x)=βx+α. Such C∗-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map fβ,α. Then we prove that s...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2012 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/148466 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Orbit Representations from Linear mod 1 Transformations / C. Correia Ramos, N. Martins, P.R. Pinto // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ. |