Orbit Representations from Linear mod 1 Transformations

We show that every point x0∈[0,1] carries a representation of a C∗-algebra that encodes the orbit structure of the linear mod 1 interval map fβ,α(x)=βx+α. Such C∗-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map fβ,α. Then we prove that s...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Authors: Correia Ramos, C., Martins, N., Pinto, P.R.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/148466
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Orbit Representations from Linear mod 1 Transformations / C. Correia Ramos, N. Martins, P.R. Pinto // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We show that every point x0∈[0,1] carries a representation of a C∗-algebra that encodes the orbit structure of the linear mod 1 interval map fβ,α(x)=βx+α. Such C∗-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map fβ,α. Then we prove that such representation is irreducible. Moreover two such of representations are unitarily equivalent if and only if the points belong to the same generalized orbit, for every α∈[0,1[ and β≥1.
ISSN:1815-0659