Gustafson-Rakha-Type Elliptic Hypergeometric Series
We prove a multivariable elliptic extension of Jackson's summation formula conjectured by Spiridonov. The trigonometric limit case of this result is due to Gustafson and Rakha. As applications, we obtain two further multivariable elliptic Jackson summations and two multivariable elliptic Bailey...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/148636 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Gustafson-Rakha-Type Elliptic Hypergeometric Series / H. Rosengren // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-148636 |
|---|---|
| record_format |
dspace |
| spelling |
Rosengren, H. 2019-02-18T16:49:27Z 2019-02-18T16:49:27Z 2017 Gustafson-Rakha-Type Elliptic Hypergeometric Series / H. Rosengren // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D67 DOI:10.3842/SIGMA.2017.037 https://nasplib.isofts.kiev.ua/handle/123456789/148636 We prove a multivariable elliptic extension of Jackson's summation formula conjectured by Spiridonov. The trigonometric limit case of this result is due to Gustafson and Rakha. As applications, we obtain two further multivariable elliptic Jackson summations and two multivariable elliptic Bailey transformations. The latter four results are all new even in the trigonometric case. This paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications. The full collection is available at https://www.emis.de/journals/SIGMA/EHF2017.html. This research is supported by the Swedish Science Research Council (Vetenskapsr˚adet). I would like to thank the anonymous referee for a very careful reading of the manuscript, leading to many improvements. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Gustafson-Rakha-Type Elliptic Hypergeometric Series Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Gustafson-Rakha-Type Elliptic Hypergeometric Series |
| spellingShingle |
Gustafson-Rakha-Type Elliptic Hypergeometric Series Rosengren, H. |
| title_short |
Gustafson-Rakha-Type Elliptic Hypergeometric Series |
| title_full |
Gustafson-Rakha-Type Elliptic Hypergeometric Series |
| title_fullStr |
Gustafson-Rakha-Type Elliptic Hypergeometric Series |
| title_full_unstemmed |
Gustafson-Rakha-Type Elliptic Hypergeometric Series |
| title_sort |
gustafson-rakha-type elliptic hypergeometric series |
| author |
Rosengren, H. |
| author_facet |
Rosengren, H. |
| publishDate |
2017 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We prove a multivariable elliptic extension of Jackson's summation formula conjectured by Spiridonov. The trigonometric limit case of this result is due to Gustafson and Rakha. As applications, we obtain two further multivariable elliptic Jackson summations and two multivariable elliptic Bailey transformations. The latter four results are all new even in the trigonometric case.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/148636 |
| fulltext |
|
| citation_txt |
Gustafson-Rakha-Type Elliptic Hypergeometric Series / H. Rosengren // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. |
| work_keys_str_mv |
AT rosengrenh gustafsonrakhatypeelliptichypergeometricseries |
| first_indexed |
2025-11-25T20:55:59Z |
| last_indexed |
2025-11-25T20:55:59Z |
| _version_ |
1850538881804402688 |