Sylvester versus Gundelfinger
Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2012
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/148715 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. |