The PBW Filtration, Demazure Modules and Toroidal Current Algebras

Let L be the basic (level one vacuum) representation of the affine Kac-Moody Lie algebra ^g. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1¼xlv0, where l ≤ m, xi Î ^g and v0 is a highest weight vector of L. In this paper we give two descriptions of the associ...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Author: Feigin, E.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149014
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The PBW Filtration, Demazure Modules and Toroidal Current Algebras / E. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let L be the basic (level one vacuum) representation of the affine Kac-Moody Lie algebra ^g. The m-th space Fm of the PBW filtration on L is a linear span of vectors of the form x1¼xlv0, where l ≤ m, xi Î ^g and v0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space Lgr with respect to the PBW filtration. The ''top-down'' description deals with a structure of Lgr as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field eθ(z)2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of Lgr as a representation of the current algebra g Ä C[t]. We prove that each quotient Fm/Fm-1 can be filtered by graded deformations of the tensor products of m copies of g.