Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge

The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a specific configuration allows to increase the power inputted into the...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Hrechko, Ya.O., Azarenkov, N.A., Babenko, Ie.V., Ryabchikov, D.L., Sereda, I.N., Boloto, D.A., Tseluyko, A.F.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149056
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, D.A. Boloto, A.F. Tseluyko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 198-201. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149056
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1490562025-02-09T11:25:10Z Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge Вплив зовнішнього магнітного поля на динамiку та потужність самостійного плазмово-пучкового розряду Влияние внешнего магнитного поля на динамику и мощность самостоятельного плазменно-пучкового разряда Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Boloto, D.A. Tseluyko, A.F. Низкотемпературная плазма и плазменные технологии The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a specific configuration allows to increase the power inputted into the discharge at several times. The distinctive features of the discharge in the presence of the external constant magnetic field are noted. Робота пов’язана з дослідженням впливу зовнішнього постійного магнітного поля на динаміку і потужність самостійного плазмово-пучкового розряду. Показано, що відносно невелике (до 1 кГс) магнітне поле специфічної конфігурації дозволяє в декілька разів збільшити потужність, що вводиться в розряд. Відзначено відмінні особливості протікання розряду при наявності зовнішнього постійного магнітного поля. Работа связана с исследованием влияния внешнего постоянного магнитного поля на динамику и мощность самостоятельного плазменно-пучкового разряда. Показано, что относительно небольшое (до 1 кГс) магнитное поле специфической конфигурации позволяет в несколько раз увеличить вводимую в разряд мощность. Отмечены отличительные особенности протекания разряда при наличии внешнего постоянного магнитного поля. 2018 Article Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, D.A. Boloto, A.F. Tseluyko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 198-201. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.58.Lq, 52.80.Tn, 52.80.Vp https://nasplib.isofts.kiev.ua/handle/123456789/149056 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Hrechko, Ya.O.
Azarenkov, N.A.
Babenko, Ie.V.
Ryabchikov, D.L.
Sereda, I.N.
Boloto, D.A.
Tseluyko, A.F.
Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
Вопросы атомной науки и техники
description The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a specific configuration allows to increase the power inputted into the discharge at several times. The distinctive features of the discharge in the presence of the external constant magnetic field are noted.
format Article
author Hrechko, Ya.O.
Azarenkov, N.A.
Babenko, Ie.V.
Ryabchikov, D.L.
Sereda, I.N.
Boloto, D.A.
Tseluyko, A.F.
author_facet Hrechko, Ya.O.
Azarenkov, N.A.
Babenko, Ie.V.
Ryabchikov, D.L.
Sereda, I.N.
Boloto, D.A.
Tseluyko, A.F.
author_sort Hrechko, Ya.O.
title Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
title_short Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
title_full Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
title_fullStr Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
title_full_unstemmed Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
title_sort effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Низкотемпературная плазма и плазменные технологии
url https://nasplib.isofts.kiev.ua/handle/123456789/149056
citation_txt Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, D.A. Boloto, A.F. Tseluyko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 198-201. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT hrechkoyao effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge
AT azarenkovna effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge
AT babenkoiev effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge
AT ryabchikovdl effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge
AT seredain effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge
AT bolotoda effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge
AT tseluykoaf effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge
AT hrechkoyao vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu
AT azarenkovna vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu
AT babenkoiev vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu
AT ryabchikovdl vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu
AT seredain vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu
AT bolotoda vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu
AT tseluykoaf vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu
AT hrechkoyao vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda
AT azarenkovna vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda
AT babenkoiev vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda
AT ryabchikovdl vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda
AT seredain vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda
AT bolotoda vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda
AT tseluykoaf vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda
first_indexed 2025-11-25T21:22:41Z
last_indexed 2025-11-25T21:22:41Z
_version_ 1849798962942312448
fulltext ISSN 1562-6016. ВАНТ. 2018. №6(118) 198 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 198-201. EFFECT OF THE EXTERNAL MAGNETIC FIELD ON THE DYNAMICS AND POWER OF THE SELF-SUSTAINED PLASMA-BEAM DISCHARGE Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, D.A. Boloto, A.F. Tseluyko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: yarikgrechko18@gmail.com The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a specific configuration allows to increase the power inputted into the discharge at several times. The distinctive features of the discharge in the presence of the external constant magnetic field are noted. PACS: 52.58.Lq, 52.80.Tn, 52.80.Vp INTRODUCTION The energy input with a high power density (at the level of 109 W/cm2 and higher) into the plasma opens new possibilities both for fundamental research in plasma physics and gas discharge, and in various fields of engineering and technology. Such power densities make it possible to obtain plasma with Debye sphere which contains one ion, i.e. as it were a quasi-crystalline plasma structure. In the technical field, such power densities are used for generation of powerful (megawatt and higher for one wavelength) directional radiation in the extreme ultraviolet range from plasma of multiply ionized atoms [1]. Here, due to volumetric radiation- stimulated effects, the radiation intensity in the longitudinal direction can be one or two orders of magnitude greater than the radiation intensity in the transverse direction. In the technology field – pulse impact on solids at such power levels allows to significantly modify their surface layer, giving unique properties. This is achieved through intensive thermal and deformation processes, when the structure and phase composition radically change. As a result, strength, wear resistance and corrosion resistance increase [2]. A self-sustained plasma-beam discharge (SPBD) gives a unique opportunity for energy input with a high power density into the local plasma region [3]. Its feature is that the acceleration of powerful electron beam occurs on the space charge double layer in the local area inside its gas discharge plasma [4]. This electron beam immediately begins to give its energy behind the acceleration zone. By controlling the double layer location it is possible to form an electron beam directly in front of the object where the energy input is supposed (plasma, solid, other objects). And here there is a fundamental difference from the case of external injection of the electron beam, which was formed by any accelerator. At high power levels, when charge compensation is required to transport the beam, the beam gives off a significant energy share in the plasma of transport space, even if it is very short. (As a rule, the beam penetration depth is determined by powerful collective effects [5]). The power level in SPBD can reach hundreds of gigawatts. At discharge voltages Ud ~ 102…106 V, the electron beam current can be Ib ~ 102…106 A. Even in case of a system with a relatively low power (Ud ~ 20 kV and Ib ~ 10 kA), the power density can reach ~ 2…3 GW/cm2 by reducing the current channel cross-section to S ~ 2…3 mm2. Here the search for new acceptable control methods both double layer parameters (hence, the electron beam energy and current) and its location is important. The aim of this work was to study the effect of the external constant magnetic field on the SPBD dynamics and the possibility of increasing the level of active power inputted into the discharge. 1. EXPERIMENTAL SETUP To implement the SPBD mode, a high-current pulsed plasma diode of low-pressure was chosen. The schematic representation of the discharge cell is shown in Fig. 1. Fig. 1. Schematic representation of the discharge cell of high-current pulsed plasma diode The diode was placed in a vacuum chamber and included a rod high-voltage electrode HVE (at the initial moment of time it was under positive potential) and a tubular grounded electrode GrE. The diameter and length of the tubular electrode were 1 and 3 cm, respectively, and the diameter of the rod electrode was 0.5 cm. The distance between the electrodes was 5 cm. To excite the SPBD at plasma concentrations above 1015 cm-3 with double layer formation near the rod electrode, the working surface of the rod electrode did not exceed 0.2 cm2 and was two orders of magnitude smaller than the working surface of the tubular electrode. For this purpose the rod electrode was tightly +V0 C1 C2 id Vign HVE HDP DP CI GrE IgnE GI MS ISSN 1562-6016. ВАНТ. 2018. №6(118) 199 insulated by means of ceramics CI, so that only its end remained open. To exclude the discharge excitation from the walls, they were also insulated with a glass insulator GI. The diode pulsed power supply was carried out from a low-inductance capacitor bank with a capacity of C0 = 1.914 μF, which was charged to a voltage of V0 = 4…14 kV and directly, without a switch, was connected to the diode electrodes. The switch was the discharge gap. The discharge was excited at a pressure p ~ 10-6 Torr after filling the gap with a primary low- density plasma due to a surface breakdown between the tubular and ignition electrodes IgnE. The inductance of the whole discharge circuit didn’t exceed 160 nH, which provided a current up to 40 kA. The share of the discharge gap inductance was at the level of 10 %, so its minor changes had little effect on the discharge current. The discharge included two stages: the initial high- voltage stage after 1…10 μs was replaced by a high- current stage with the current oscillations period of ~ 3.5 μs. The high-voltage stage duration depended on the charging voltage and the ignition power. The formation of a dense ~ 1016…1017 cm-3 discharge plasma occurred during the transition from the high- voltage to the high-current stage under intense evaporation conditions of the rod electrode working surface and high-power ionization of vapour. The energy for these processes was supplied by an electron beam accelerated in the double layer, which throughout the whole high-voltage stage was located near the rod electrode. With the beginning of the high-current stage, this double layer disappeared, but other double layers periodically appeared and disappeared, changing their localization and the potential drop magnitude. The appearance of the next double layer was clearly seen as a surge in the discharge active voltage. To control the double layers location at the high- current discharge stage and to increase the power inputted into the discharge, an external magnetic field, which was created by ring permanent magnets, was used in the work. It is necessary to immediately make a reservation that the external magnetic field was two orders of magnitude less than the intrinsic magnetic field of the current-carrying plasma cord. And this field was by no means intended to be used to hold a plasma cord. His goal was to form such a topology of the primary plasma, which would later set a certain scenario for the development of a high-current discharge with a given place of double layers formation and parameters. The permanent ring magnets with external and internal diameters of 6 and 2.5 cm, respectively, had a thickness of 0.9 cm. The magnetic field magnitude varied due to the number of magnets in the magnetic system MS. Optimal results were obtained for the magnetic system with two ring magnets. A feature of ring magnets is the presence of a magnetic field inversion point, which arises from the bifurcation of field fluxes. Part of the magnetic flux is closed through the central hole, and a part – through the outer space (Fig. 2). Such distribution of magnetic fluxes creates a magnetic trap and magnetic barriers for the plasma. Due to diamagnetism, the primary low-temperature plasma is concentrated in the region near the field inversion point and hardly overcomes the humps of the intensities Bmin and Bmax. Fig. 2. Magnetic field topology and the induction distribution on the discharge axis for magnetic system with two ring permanent magnets The experiments were carried out for four positions of the magnetic system regarding the high-voltage electrode. In the first case, the electrode end was in the region of minimal magnetic field minB = 0.235 kG, in the second case – in the region of the magnetic field inversion point Вinv = 0, in the third case – at the intermediate point with magnetic field induction ~ 0.64 kG (the electrode end coincided with the magnetic system end), in the fourth case – in the region of the maximum magnetic field Bmax = 1.1 kG (in the center of the magnetic system). The magnetic field topology and the field induction distribution on the discharge cell axis, corresponding to the four listed cases, for magnetic system with two magnets are shown in Fig. 2. 2. RESULTS AND DISCUSSIONS The efficiency of energy input into the discharge using an external magnetic field was determined by the level of active power generated in the discharge. The active power calculation was made on the basis of the discharge current dynamics using the original method. A full description of this method is presented in [6]. Fig. 3 shows the characteristic time dependence of the discharge current, the discharge active voltage, and the active power inputted into the discharge, at the charging voltage V0 = 12 kV. The solid line corresponds to the case when the high-voltage electrode end is located at the magnetic field inversion point, the dashed line – to the case without the external magnetic field. One can see that the presence of the external magnetic field leads to discharge current level decrease. This is due to the primary plasma concentration in the axial region and a decrease its current-carrying ability. The studies of the high-voltage electrode diameter effect on the discharge dynamics are indirect confirmation of this [7]. Against the background of discharge current decrease, the level of active power inputted into the discharge increases, which is directly related to the 4 3 2 1 -5 -3 -1-6 -4 0 1 0.5 1.0 -2 B, kG z, cm Bmin Binv Bmax 200 ISSN 1562-6016. ВАНТ. 2018. №6(118) discharge active voltage increase. In the given case, in the presence of external magnetic field, the level of power inputted into the discharge at the current maximum, increases from 30 to 55 MW, while the current decreases slightly from 34 to 30 kA. The active voltage magnitude at this moment is several times greater than without the external magnetic field. Fig. 3. Dynamics of discharge current, discharge active voltage and active power inputted into the discharge at the charging voltage V0 = 12 kV Fig. 4 demonstrates the comparative time dependence of the active power inputted into the discharge in the 1st half-period, in the presence of an external magnetic field aP and its absence * aP . These time dependences correspond to the charging voltage V0 = 12 kV. The solid line corresponds to the case when the high-voltage electrode end is located at the magnetic field inversion point, the dashed line – at the magnetic 5.5µ 6.0µ 6.5µ 7.0µ 0 1 2 3 4 5 6 7 8 P a /P * a , re l. u n . t, s inversion point magn. field minimum magn. field 0.64 kG Fig. 4. Comparative time dependence of the active power inputted into the discharge in the 1st half-period in case of presence aP and absence * aP of the external magnetic field field minimum, the dotted line – at the point with the magnetic field induction of about 0.64 kG. The comparative dependence is presented only for the 1st half-period, since the most of energy is released in this half-period and accordingly, the highest power levels are generated. The figure shows that in the presence of the external magnetic field, the level of active power inputted into the discharge increases. In this case, the largest power increase is observed for the case when the high-voltage electrode end is located at the magnetic field inversion point. On average, for the 1st half-period, the power level increases by 2 times. Fig. 5 shows the ratio of the energies released in the discharge in the 1st half-period, with external magnetic field aW and without it * aW depending on the initial stored energy. One can see that the energy share, released in the discharge in the 1st half period, in the presence of the external magnetic field, exceeds the case without the magnetic field. At the initial stored energy up to 80 J, the largest increase of the energy, released in the discharge, is observed for the case when the high- voltage electrode end is located at the magnetic field minimum, over 80 J – at the magnetic field inversion point. 0 20 40 60 80 100 120 140 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 W 1 a /W * 1 a , re l. u n . W 0 , J inversion point magn. field mimimum magn. field 0.64 kG magn. field maximum Fig. 5. Ratio of the energy released in the 1st half-period in case of presence Wa and absence Wa *of the external magnetic field from the initial stored energy It should be noted a distinctive feature of the discharge in the presence of the external magnetic field. When the high-voltage electrode end is located at the magnetic field minimum, the primary plasma, when filling the discharge gap, overcomes the magnetic barrier with the magnetic field induction minB . In case when the electrode end is located at the magnetic field inversion point, the plasma, having overcome the first magnetic barrier, is forced into the region of reduced magnetic field and concentrated near the inversion point. In the third and fourth case, when the electrode end is located beyond the inversion point, the plasma must pass two magnetic barriers, the first – with magnetic field induction minB and the second – with induction of ~ 0.64 kG for the third case, and induction Bmax for the case of the maximum magnetic field. In the last case, a higher density of the primary plasma is required. In case when the electrode end was located at the magnetic field maximum, the minimum discharge 5.0µ 6.0µ 7.0µ 8.0µ 9.0µ 10.0µ -20 -10 0 10 20 30 inversion point without ext. magn. field I d , k A t, s 5.0µ 6.0µ 7.0µ 8.0µ 9.0µ 10.0µ 0 2 4 10 12 inversion point without ext. magn. field U a , k V t, s 5.0µ 6.0µ 7.0µ 8.0µ 9.0µ 10.0µ 0 20 40 60 inversion point without ext. magn. field P a , M W t, s ISSN 1562-6016. ВАНТ. 2018. №6(118) 201 ignition voltage was 2 kV, and a stable discharge excitation was observed at the ignition voltage of 3…4 kV. Also it should be noted that in other cases, the application of the external magnetic field contributed to decrease of the minimum ignition voltage, which implies the creation of the primary plasma with reduced density. CONCLUSIONS Thus, it has been shown that the presence of the external magnetic field, which was created by the magnetic system on permanent ring magnets, effects on the dynamic of the self-sustained plasma-beam discharge and allows to increase the level of active power inputted into the discharge. In spite of the fact that the external magnetic field was two orders of magnitude less than the intrinsic magnetic field of the discharge, this made it possible to form such a topology of the primary plasma, which subsequently set a certain scenario for the development of a high-current discharge with a given place of double layer formation and parameters. It has been noted that the presence of the external magnetic field, with configuration that given in this paper, makes it possible to reduce the primary plasma density, but at the magnetic field maximum a higher density is required to excite a high- current discharge. The greatest increase of the active power inputted into the discharge has been observed in the case when the high-voltage electrode end is located in the magnetic field inversion point, which is a distinctive feature of the ring magnet. Due to diamagnetism, the primary plasma was displaced into a region with a low magnetic field and concentrated near the magnetic field inversion point. It has been shown that the power increase is observed against the background of the discharge current decrease and the discharge active voltage increase. REFERENCES 1. Ie.V. Borgun et al. The formation of a power multi- pulse extreme ultraviolet radiation in the pulse plasma diode of low pressure // Acta Polytechnica. 2013, v. 53, № 2, p. 117-122. 2. A.Ya. Leyvi et al. Modification of the constructional materials with the intensive charged particle beams and plasma flows // Bulletin of the South Ural State University. Ser. “Mechanical Engineering Industry”. 2016, v. 16, № 1, p. 28-55. 3. Y. Hrechko et al. The efficiency of the pulsed power input in the limited plasma diode // 2017 IEEE 21st International Conference on Pulsed Power (PPC), Brighton. 2017, p. 1-4 4. E.I. Lutsenko et al. Dynamic double layers in high- current plasma diodes // Journal of Technical Physics. 1988, v. 58, № 7, p. 1299-1309. 5. B.B. Kadomtsev. Collective phenomena in plasma. Moscow: “Nauka”, 1976. 6. Ya.O. Hrechko et al. Features of active power definition in high-current pulsed discharge // Problems of Atomic Science and Technology. Series “Plasma Physics”(22). 2016, № 6 (106), p. 48-51. 7. Ya.O. Hrechko et al. Electrodes dimensions effect on the self-sustained plasma-beam discharge power // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration” (10). 2018, № 4 (116), p. 156-159. Article received 22.09.2018 ВЛИЯНИЕ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ НА ДИНАМИКУ И МОЩНОСТЬ САМОСТОЯТЕЛЬНОГО ПЛАЗМЕННО-ПУЧКОВОГО РАЗРЯДА Я.О. Гречко, Н.А. Азаренков, Е.В. Бабенко, Д.Л. Рябчиков, И.Н. Середа, Д.А. Болото, A.Ф. Целуйко Работа связана с исследованием влияния внешнего постоянного магнитного поля на динамику и мощность самостоятельного плазменно-пучкового разряда. Показано, что относительно небольшое (до 1 кГс) магнитное поле специфической конфигурации позволяет в несколько раз увеличить вводимую в разряд мощность. Отмечены отличительные особенности протекания разряда при наличии внешнего постоянного магнитного поля. ВПЛИВ ЗОВНІШНЬОГО МАГНІТНОГО ПОЛЯ НА ДИНАМIКУ ТА ПОТУЖНІСТЬ САМОСТІЙНОГО ПЛАЗМОВО-ПУЧКОВОГО РОЗРЯДУ Я.О. Гречко, М.О. Азарєнков, Є.В. Бабенко, Д.Л. Рябчіков, І.М. Середа, Д.О. Болото, О.Ф. Целуйко Робота пов’язана з дослідженням впливу зовнішнього постійного магнітного поля на динаміку і потужність самостійного плазмово-пучкового розряду. Показано, що відносно невелике (до 1 кГс) магнітне поле специфічної конфігурації дозволяє в декілька разів збільшити потужність, що вводиться в розряд. Відзначено відмінні особливості протікання розряду при наявності зовнішнього постійного магнітного поля.