Features of ignition and combustion of a twocomponent gas suspension of coal particles

Physical and mathematical modeling of high-temperature heat and mass transfer and combustion kinetics of a two-fraction gas suspension of carbon particles at different gas temperatures is carried out. It was assumed that two parallel chemical reactions occur on the surface of the carbon particles:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Orlovskaya, S.G., Zuj, O.N., Chernyak, V.Ya.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149058
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Features of ignition and combustion of a twocomponent gas suspension of coal particles / S.G. Orlovskaya, O.N. Zuj, V.Ya. Chernyak // Вопросы атомной науки и техники. — 2018. — № 6. — С. 245-248. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149058
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1490582025-02-09T13:15:40Z Features of ignition and combustion of a twocomponent gas suspension of coal particles Особливості займання та горіння двокомпонентного газозавису вуглецевих частинок Особенности воспламенения и горения двухкомпонентной газовзвеси углеродных частиц Orlovskaya, S.G. Zuj, O.N. Chernyak, V.Ya. Низкотемпературная плазма и плазменные технологии Physical and mathematical modeling of high-temperature heat and mass transfer and combustion kinetics of a two-fraction gas suspension of carbon particles at different gas temperatures is carried out. It was assumed that two parallel chemical reactions occur on the surface of the carbon particles: C + O₂ = CO₂ (I), 2C + O₂ = 2CO (II). Molecular-conjugate heat exchange of particles with gas was taken into account, as well as heat exchange by radiation with the walls of the reaction apparatus. As a result of the numerical experiment, the characteristics of ignition and combustion of gas-suspension particles in air at various temperatures of the surrounding gas are determined. For calculations, a two-fraction gas suspension was chosen with equal mass fractions and particle diameters, which differ by a factor of 2: db₁ = 60 μm, db₂ = 120 μm. The range of the initial gas temperatures studied is 1100…1500 K. As a result of the calculations carried out, it was established that as the gas temperature decreases, the coarse fraction can ignite earlier than the fine fraction. At high gas temperatures, on the contrary: the induction period of fine particles is much larger than the period of induction of coarse particles. Critical parameters of ignition of two-fraction gases are found. The main characteristics of combustion are the time and temperature of combustion of the particles. It is proved that under the conditions of a two-fraction gas suspension the burning time of the particles depends weakly on the temperature of the gas. It has also been established that in the region of low gas temperatures, the combustion temperature of the fine fraction is smaller than that of the large fraction. This is explained by the large heat removal from small particles by the molecular-convective process and by the lack of oxidizer in the combustion stage. Oxygen is consumed in the combustion of large particles, which, at low temperatures, ignite earlier. The burning times of particles of coarse and fine fractions of a gas suspension were found. Comparison of the combustion time of small and large particles led to the conclusion that under the conditions of a gas suspension with an excess of an oxidizer close to unity, the particles burn in a diffusion mode. It is shown that the extinction of particles is degenerate. After the moment of extinction, the particles are oxidized in the kinetic regime at a high gas temperature. Проведено фізико-математичне моделювання високотемпературного тепломасообміну та кінетики горіння двофракційного газозавису вуглецевих частинок при різних температурах газу. Передбачалося, що на поверхні вуглецевих частинок протікають дві паралельні хімічні реакції: С+О₂=СО₂ (I), 2С+О₂=2СО (II). Враховувався молекулярно-конвективний теплообмін частинок з газом, а також теплообмін випромінювання зі стінками реакційної установки. В результаті проведеного чисельного експерименту визначені характеристики займання і горіння частинок газозавису в повітрі при різних температурах навколишнього газу. Для розрахунків вибирався двофракційний газозавис з рівними масовими концентраціями фракцій і діаметрами частинок, які відрізняються в 2 рази db₁ = 60 мкм, db₂ = 120 мкм. Діапазон досліджуваних початкових температур газу 1100…1500 К. В результаті проведених розрахунків встановлено, що при зменшенні температури газу частинки великої фракції можуть займатися раніше, ніж частинки дрібної фракції. При високих температурах газу навпаки: період індукції дрібних частинок значно перевищує період індукції частинок великої фракції. Знайдено критичні параметри займання двофракційного газозавису. Основними характеристиками горіння є час і температура горіння частинок. Доведено, що в умовах двофракційного газозавису час горіння частинок мало залежить від температури газу. Також встановлено, що в області низьких температур газу температура горіння частинок дрібної фракції менше, ніж великої. Це пояснюється великим тепловідводом від дрібних частинок молекулярноконвективним шляхом і недостачею окислювача на стадії горіння. Кисень витрачається на горіння великих частинок, які при низьких температурах спалахують раніше. Знайдено часи горіння частинок великої і дрібної фракцій газозавису. Проведено физико-математическое моделирование высокотемпературного тепломассообмена и кинетики горения двухфракционной газовзвеси углеродных частиц при различных температурах газа. Предполагалось, что на поверхности углеродных частиц протекают две параллельные химические реакции: С+О₂=СО₂ (I), 2С+О₂=2СО (II). Учитывался молекулярно-конвективный теплообмен частиц с газом, а также теплообмен излучения со стенками реакционной установки. В результате проведенного численного эксперимента определены характеристики воспламенения и горения частиц газовзвеси в воздухе при различных температурах окружающего газа. Для расчетов выбиралась двухфракционная газовзвесь с равными массовыми концентрациями фракций и диаметрами частиц, которые отличаются в 2 раза: db₁=60 мкм, db₂=120 мкм. Диапазон исследуемых начальных температур газа 1100…1500 К. В результате проведенных расчётов установлено, что при уменьшении температуры газа частицы крупной фракции могут воспламеняться раньше, чем частицы мелкой фракции. При высоких температурах газа наоборот: период индукции мелких частиц значительно превышает период индукции частиц крупной фракции. Найдены критические параметры воспламенения двухфракционных газовзвесей. Основными характеристиками горения являются время и температура горения частиц. Доказано, что в условиях двухфракционной газовзвеси время горения частиц слабо зависит от температуры газа. Также установлено, что в области низких температур газа температура горения частиц мелкой фракции меньше, чем крупной. Это объясняется большим теплоотводом от мелких частиц молекулярно-конвективным путем и недостатком окислителя на стадии горения. Кислород расходуется при горении крупных частиц, которые при низких температурах воспламеняются раньше. Найдены времена горения частиц крупной и мелкой фракций газовзвеси. 2018 Article Features of ignition and combustion of a twocomponent gas suspension of coal particles / S.G. Orlovskaya, O.N. Zuj, V.Ya. Chernyak // Вопросы атомной науки и техники. — 2018. — № 6. — С. 245-248. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 536.46 https://nasplib.isofts.kiev.ua/handle/123456789/149058 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Orlovskaya, S.G.
Zuj, O.N.
Chernyak, V.Ya.
Features of ignition and combustion of a twocomponent gas suspension of coal particles
Вопросы атомной науки и техники
description Physical and mathematical modeling of high-temperature heat and mass transfer and combustion kinetics of a two-fraction gas suspension of carbon particles at different gas temperatures is carried out. It was assumed that two parallel chemical reactions occur on the surface of the carbon particles: C + O₂ = CO₂ (I), 2C + O₂ = 2CO (II). Molecular-conjugate heat exchange of particles with gas was taken into account, as well as heat exchange by radiation with the walls of the reaction apparatus. As a result of the numerical experiment, the characteristics of ignition and combustion of gas-suspension particles in air at various temperatures of the surrounding gas are determined. For calculations, a two-fraction gas suspension was chosen with equal mass fractions and particle diameters, which differ by a factor of 2: db₁ = 60 μm, db₂ = 120 μm. The range of the initial gas temperatures studied is 1100…1500 K. As a result of the calculations carried out, it was established that as the gas temperature decreases, the coarse fraction can ignite earlier than the fine fraction. At high gas temperatures, on the contrary: the induction period of fine particles is much larger than the period of induction of coarse particles. Critical parameters of ignition of two-fraction gases are found. The main characteristics of combustion are the time and temperature of combustion of the particles. It is proved that under the conditions of a two-fraction gas suspension the burning time of the particles depends weakly on the temperature of the gas. It has also been established that in the region of low gas temperatures, the combustion temperature of the fine fraction is smaller than that of the large fraction. This is explained by the large heat removal from small particles by the molecular-convective process and by the lack of oxidizer in the combustion stage. Oxygen is consumed in the combustion of large particles, which, at low temperatures, ignite earlier. The burning times of particles of coarse and fine fractions of a gas suspension were found. Comparison of the combustion time of small and large particles led to the conclusion that under the conditions of a gas suspension with an excess of an oxidizer close to unity, the particles burn in a diffusion mode. It is shown that the extinction of particles is degenerate. After the moment of extinction, the particles are oxidized in the kinetic regime at a high gas temperature.
format Article
author Orlovskaya, S.G.
Zuj, O.N.
Chernyak, V.Ya.
author_facet Orlovskaya, S.G.
Zuj, O.N.
Chernyak, V.Ya.
author_sort Orlovskaya, S.G.
title Features of ignition and combustion of a twocomponent gas suspension of coal particles
title_short Features of ignition and combustion of a twocomponent gas suspension of coal particles
title_full Features of ignition and combustion of a twocomponent gas suspension of coal particles
title_fullStr Features of ignition and combustion of a twocomponent gas suspension of coal particles
title_full_unstemmed Features of ignition and combustion of a twocomponent gas suspension of coal particles
title_sort features of ignition and combustion of a twocomponent gas suspension of coal particles
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Низкотемпературная плазма и плазменные технологии
url https://nasplib.isofts.kiev.ua/handle/123456789/149058
citation_txt Features of ignition and combustion of a twocomponent gas suspension of coal particles / S.G. Orlovskaya, O.N. Zuj, V.Ya. Chernyak // Вопросы атомной науки и техники. — 2018. — № 6. — С. 245-248. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT orlovskayasg featuresofignitionandcombustionofatwocomponentgassuspensionofcoalparticles
AT zujon featuresofignitionandcombustionofatwocomponentgassuspensionofcoalparticles
AT chernyakvya featuresofignitionandcombustionofatwocomponentgassuspensionofcoalparticles
AT orlovskayasg osoblivostízajmannâtagorínnâdvokomponentnogogazozavisuvuglecevihčastinok
AT zujon osoblivostízajmannâtagorínnâdvokomponentnogogazozavisuvuglecevihčastinok
AT chernyakvya osoblivostízajmannâtagorínnâdvokomponentnogogazozavisuvuglecevihčastinok
AT orlovskayasg osobennostivosplameneniâigoreniâdvuhkomponentnojgazovzvesiuglerodnyhčastic
AT zujon osobennostivosplameneniâigoreniâdvuhkomponentnojgazovzvesiuglerodnyhčastic
AT chernyakvya osobennostivosplameneniâigoreniâdvuhkomponentnojgazovzvesiuglerodnyhčastic
first_indexed 2025-11-26T02:07:17Z
last_indexed 2025-11-26T02:07:17Z
_version_ 1849816872021655552
fulltext ISSN 1562-6016. ВАНТ. 2018. №6(118) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 245-248. 245 FEATURES OF IGNITION AND COMBUSTION OF A TWO- COMPONENT GAS SUSPENSION OF COAL PARTICLES S.G. Orlovskaya1, O.N. Zuj1, V.Ya. Chernyak2 1Odessa National I.I. Mechnikov’s University, Odessa, Ukraine; 2Kyiv National Taras Shevchenko University, Kyiv, Ukraine Physical and mathematical modeling of high-temperature heat and mass transfer and combustion kinetics of a two-fraction gas suspension of carbon particles at different gas temperatures is carried out. It was assumed that two parallel chemical reactions occur on the surface of the carbon particles: C + O2 = CO2 (I), 2C + O2 = 2CO (II). Molecular-conjugate heat exchange of particles with gas was taken into account, as well as heat exchange by radiation with the walls of the reaction apparatus. As a result of the numerical experiment, the characteristics of ignition and combustion of gas-suspension particles in air at various temperatures of the surrounding gas are determined. For calculations, a two-fraction gas suspension was chosen with equal mass fractions and particle diameters, which differ by a factor of 2: db1 = 60 μm, db2 = 120 μm. The range of the initial gas temperatures studied is 1100…1500 K. As a result of the calculations carried out, it was established that as the gas temperature decreases, the coarse fraction can ignite earlier than the fine fraction. At high gas temperatures, on the contrary: the induction period of fine particles is much larger than the period of induction of coarse particles. Critical parameters of ignition of two-fraction gases are found. The main characteristics of combustion are the time and temperature of combustion of the particles. It is proved that under the conditions of a two-fraction gas suspension the burning time of the particles depends weakly on the temperature of the gas. It has also been established that in the region of low gas temperatures, the combustion temperature of the fine fraction is smaller than that of the large fraction. This is explained by the large heat removal from small particles by the molecular-convective process and by the lack of oxidizer in the combustion stage. Oxygen is consumed in the combustion of large particles, which, at low temperatures, ignite earlier. The burning times of particles of coarse and fine fractions of a gas suspension were found. Comparison of the combustion time of small and large particles led to the conclusion that under the conditions of a gas suspension with an excess of an oxidizer close to unity, the particles burn in a diffusion mode. It is shown that the extinction of particles is degenerate. After the moment of extinction, the particles are oxidized in the kinetic regime at a high gas temperature. PACS: 536.46 1. PHYSICO-MATHEMATICAL MODELING The use of plasma processes to activate the combustion of pulverized coal dictates the need to clarify the patterns of coal combustion in a high- temperature gaseous oxidant. The fuel used for combustion in power plants has a polydisperse composition. The particle size and their concentration in the gas suspension affect the heat and mass exchange rate with the oxidant gas and the plant walls [1]. Two fraction dust-air mixture is a simplest case of polydisperse suspension. So the purpose of this work is to study the characteristics of ignition and combustion of a two-fraction suspension of carbon particles in air at different temperatures. The main characteristics of fuels combustion are the ignition delay (induction period), the burning temperature and time, critical parameters (temperature, the particles diameters and mass concentrations), corresponding to fuel ignition and extinction. The physico-mathematical model of high- temperature heat and mass transfer of carbon particles- gas suspension includes the differential equations of thermal and mass balances for the particles of each fraction and the corresponding equations for oxidizing gas [2, 3]. When particles hit a heated oxidizer, chemical reactions begin to occur on their surfaces and in the pores, as a result of which, the particles ignite and burn. The total density of chemical heat release for a particle of the i-th fraction as a result of surface and internal reaction with two parallel reactions (С+О2=СО2 (I), 2С+О2=2СО (II)), we find from the expression [2]:     ii vi iiis,Ogiiich kk k KKnqkqkq 21 22211 , 1    (1), ichq – the total density of chemical heat release at the surface and in the pores of the particle, ii k,k 21 – the rate constants of chemical reactions (I) and (II), 21 q,q – thermal effects of chemical reactions (I) and (II), g – gas density, is,On 2 – the relative mass concentration of oxygen on the surface of the carbon particle, iK – the ratio of the constants of the internal and surface responses, vik – effective internal reaction constant [3]. In the combustion chamber, molecular-convective ( iq ) and radiant heat exchange ( iwq ) of particles with heated gas and with walls of the reaction volume occurs. The densities of these flows can be found from the equations: sfiii qqq   , )TT(q giii   , (2) 246 ISSN 1562-6016. ВАНТ. 2018. №6(118) i g i d uN    . )TT(q wiiw 44   . (3) Where iq – is the component of the heat flux density due to molecular-convective heat transfer, qsfi – component of the heat flux density due to the Stefan flow nt [4], i – coefficient of heat exchange of a particle with a gas, wi T,T,T g – respectively, the temperature of the particle, gas and walls of the reaction chamber, g – coefficient of thermal conductivity of gas, id – particle diameter. Let us write the heat and mass balance equations for a particle of the i-th fraction: ibiwiiich iii T)t(T,qqq t Tdc    0 6   , (4)       ,dtd,nkk M M W,W t d ibigis,Oii O C isis i i     02 2 1 221 2  (5)     .t,KW t d ibiiis i i       0 6 1 (6) Here c – specific heat of the particle; ρi – particle density; t – time; CM , 2OM – molar masses of carbon and oxygen, respectively. When burning pulverized coal suspended in the reaction volume, over time, the temperature of the gas and the concentration of oxygen change. Equations of heat and mass balances for gas with allowance for external heat and mass transfer have the form: )TT(FqCS t T c ggggiNi n i g gg         i 1 ,  gg TtT )0( , (7) ,)0( ),()( , ,21, 1 22 222 2          OgO gOOggviiisOiN n i gO ntn nnFkkknSC t n ii  (8) where gс – the specific heat of the gas; iS – the surface area of the particle; gF – the specific surface of the gas suspension; g,On 2 – the relative mass concentration of oxygen in the gas; g , g – the coefficients of heat exchange and mass transfer of the gas suspension with the surrounding medium; iNC – the numerical concentration of particles of the i-th fraction, which is related to the mass concentration of carbon fuel relationship: iNiiim CdС   3 6 1 , .CС n 1i mm i    2. CALCULATION RESULTS AND DISCUSSION Let us calculate the ignition and combustion of a two-fraction gas suspension of carbon particles with particle diameters that differ by several times and equal to the mass concentrations of the fractions. Fig. 1 shows the time dependences of the temperatures and particle diameters of each of the fractions, the gas temperature in the combustion of a slurry with initial particle diameters: 1bd = 60 μm (fine fraction) and 2bd =120 μm (coarse fraction) for different initial gas temperatures. The initial mass concentration of carbon fuel in the gas suspension was Сmb = 0.016 kg/m3, the mass concentrations of each fraction were: 1Сmb = 2Сmb = 0.008 kg/m3. The gas suspension data are loose and are characterized by an excess oxygen factor of 1.5. Fig. 1. Dependences of T, Tg, d on time. a, b: wg TT  =1450 K; c, d wg TT  =1350 K. 1 – 1bd =60 μm; 2 – 2bd =120 μm; 3 – gas temperature gT The points I and E in (see Fig. 1) characterize, respectively, the moments of ignition and extinction of the particles. The time from the start of warming up to point I determines the period of induction (tind), and from point I to point E – the burning time (tbur) of the particles. The diameter of the particles in the combustion stage (see Fig. 1,b,d) decreases rapidly until the moment of extinction (p.E). At this point, there is a decrease in the rates of chemical reactions on the surface of the carbon particles, which is characterized by a fracture in the dependences d(t). As follows from the figures, after the moment of extinction, the particle diameter continues to decrease, but at a slower rate. Oxidation of the particle takes place in the kinetic regime. Consequently, in contrast to single particles, the attenuation of the particles of a gas suspension is degenerate. Analysis of the dependences d(t) makes it ISSN 1562-6016. ВАНТ. 2018. №6(118) 247 possible to determine the time of the complete transformation of the particles. Analysis of the temperature curves shows that at a high gas temperature, ignition and burnup of the fine fraction first occurs (see Fig. 1,a,b). Particles of coarse fraction ignite shortly before the extinction of fine particles. During the burnout of the fine fraction, the oxygen concentration decreases substantially, so that combustion and subsequent combustion of the coarse fraction occur at low values. At a lower gas temperature (Fig. 1,c,d), larger particles ignite earlier (curves 2). According to formulas (2), fine particles have a higher heat transfer coefficient α, which leads to an increase in the heat flux density qα. Therefore, the increase in the ignition time of the fine fraction in comparison with the coarse fraction is explained by the increase in the heat flux from particles of small dimensions with a decrease in the gas temperature. In this case, the time of the chemical component of the induction period greatly increases [5]. At a certain critical gas temperature (ignition temperature) Tcr (Fig. 2), the gas suspension is not ignited. The critical ignition temperature of a two- fraction gas suspension is significantly lower than the ignition temperature of single particles of the same diameter. Moreover, the critical ignition temperatures for single large and small particles are significantly different, and under conditions of a two-fraction gas suspension practically coincide. Fig. 2. Dependences of the induction period of the gas suspension from the initial gas temperature: 1 – db1=60 μm; 2 – db2=120 μm Let us analyze the burning characteristics of a two- fraction gas suspension. It can be seen from Fig. 3,a that the burning time of the fine and coarse fractions of the gas suspension depends only slightly on the temperature of the gas. The burning time of the coarse fraction is almost 4 times that of the fine fraction with a ratio of their initial diameters db1/db2=2. This indicates that the combustion of particles under gas-suspension conditions occurs in the diffusion regime. The combustion temperature of fine particles in the region of low gas temperatures is less than the burning temperature of large particles (see Fig. 3,b). This is due to two reasons: a large heat loss to the gas by a molecular-convective route and a lack of an oxidizer at the stage of burning of small particles. A significant decrease in the concentration of the oxidant occurs as a result of its intensive consumption by burning large particles that ignited earlier (see Fig. 1,с). Fig. 3. Dependences of the burning time (a) and the maximum burning temperature (b) of the particles on the gas temperature: 1 – db1=60 μm; 2 – db2=120 μm CONCLUSIONS It has been established that at gas temperatures above 1400 K, the ignition delay time (induction period) of a two-fraction gas suspension is determined by the ignition time of the fine fraction, below this value by the ignition time of the coarse fraction. For example, for a gas temperature of 1500 K, the induction period of fine particles (fraction of 60 μm) is half the time of induction of large particles (fraction of 120 μm). At gas temperatures below 1400 K, the induction period of the fine fraction is larger than that of the large fraction, and this difference increases with decreasing gas temperature. This is due to the increase in heat loss by molecular convection to the surrounding gas environment for the fine fraction. The ignition temperatures of the two-fraction gases are found. The critical temperature of ignition of particles in the gas suspension is significantly lower than for single particles of the same diameter. The lowering of the ignition temperature of the gas suspension is due to the heating of the gas due to the heat of chemical reactions during the oxidation of the aggregate of particles. Moreover, for large and small single carbon particles, the critical gas temperatures differ substantially, and under conditions of a two- fraction gas suspension, they practically coincide. The temperature range of the ambient gas and the walls of the reaction unit is determined, for which the combustion temperature of the fine particles is less than that of the coarse fraction of the gas suspension. So for gas temperatures above 1300 K, the combustion of the fine fraction occurs at higher temperatures. It is found that for a gas temperature of 1500 K, the combustion temperature of fine particles is more than 200 degrees higher than the burning temperature of large particles of a gas suspension. Unlike single particles, the gas- suspension damping proceeds in a degenerate regime, since the temperature difference between the particles and the gas is small. In this case, the oxidation of particles of the gas suspension takes place in the kinetic regime, which makes it possible to estimate the time of their complete conversion. 248 ISSN 1562-6016. ВАНТ. 2018. №6(118) REFERENCES 1. V.V. Pomerantsev. Fundamentals of the practical theory of combustion. Leningrad: “Energia”, 1973. 2. S.G. Orlovska. Investigation of the regularities of combustion of gas suspensions of carbon particles // Physics and Chemistry of Solid State. 2015, v. 16, № 1, p. 210-216. 3. S.G. Orlovskaya, V.V. Kalinchak, O.N. Zuy. Effect of an internal reaction on the characteristics of high- temperature heat and mass transfer of gas suspensions of carbon particles // High Temperature. 2014, v. 52, № 5, p. 716-723. 4. V.V. Kalinchak, S.G. Orlovskaya, A.I. Kalinchak, A.V. Dubinskiy. Heat and mass exchange of a carbon particle with air, taking into account the Stefan flow and heat losses by radiation // Thermophysics of High Temperatures. 1996, v. 34, № 1, p. 83-91. 5. S.G. Orlovskaya, V.V. Kalinchak, O.N. Zuj, M.V. Liseanskaia. Study of ignition and combustion of two-fraction coal-air suspension // Ukr. J. Phys. 2018, v. 63, № 4, p. 370-375. Article received 15.09.2018 ОСОБЕННОСТИ ВОСПЛАМЕНЕНИЯ И ГОРЕНИЯ ДВУХКОМПОНЕНТНОЙ ГАЗОВЗВЕСИ УГЛЕРОДНЫХ ЧАСТИЦ С.Г. Орловская, О.Н. Зуй, В.Я. Черняк Проведено физико-математическое моделирование высокотемпературного тепломассообмена и кинетики горения двухфракционной газовзвеси углеродных частиц при различных температурах газа. Предполагалось, что на поверхности углеродных частиц протекают две параллельные химические реакции: С+О2=СО2 (I), 2С+О2=2СО (II). Учитывался молекулярно-конвективный теплообмен частиц с газом, а также теплообмен излучения со стенками реакционной установки. В результате проведенного численного эксперимента определены характеристики воспламенения и горения частиц газовзвеси в воздухе при различных температурах окружающего газа. Для расчетов выбиралась двухфракционная газовзвесь с равными массовыми концентрациями фракций и диаметрами частиц, которые отличаются в 2 раза: db1=60 мкм, db2=120 мкм. Диапазон исследуемых начальных температур газа 1100…1500 К. В результате проведенных расчётов установлено, что при уменьшении температуры газа частицы крупной фракции могут воспламеняться раньше, чем частицы мелкой фракции. При высоких температурах газа наоборот: период индукции мелких частиц значительно превышает период индукции частиц крупной фракции. Найдены критические параметры воспламенения двухфракционных газовзвесей. Основными характеристиками горения являются время и температура горения частиц. Доказано, что в условиях двухфракционной газовзвеси время горения частиц слабо зависит от температуры газа. Также установлено, что в области низких температур газа температура горения частиц мелкой фракции меньше, чем крупной. Это объясняется большим теплоотводом от мелких частиц молекулярно-конвективным путем и недостатком окислителя на стадии горения. Кислород расходуется при горении крупных частиц, которые при низких температурах воспламеняются раньше. Найдены времена горения частиц крупной и мелкой фракций газовзвеси. ОСОБЛИВОСТІ ЗАЙМАННЯ ТА ГОРІННЯ ДВОКОМПОНЕНТНОГО ГАЗОЗАВИСУ ВУГЛЕЦЕВИХ ЧАСТИНОК С.Г. Орловська, О.Н. Зуй, В.Я. Черняк Проведено фізико-математичне моделювання високотемпературного тепломасообміну та кінетики горіння двофракційного газозавису вуглецевих частинок при різних температурах газу. Передбачалося, що на поверхні вуглецевих частинок протікають дві паралельні хімічні реакції: С+О2=СО2 (I), 2С+О2=2СО (II). Враховувався молекулярно-конвективний теплообмін частинок з газом, а також теплообмін випромінювання зі стінками реакційної установки. В результаті проведеного чисельного експерименту визначені характеристики займання і горіння частинок газозавису в повітрі при різних температурах навколишнього газу. Для розрахунків вибирався двофракційний газозавис з рівними масовими концентраціями фракцій і діаметрами частинок, які відрізняються в 2 рази db1 = 60 мкм, db2 = 120 мкм. Діапазон досліджуваних початкових температур газу 1100…1500 К. В результаті проведених розрахунків встановлено, що при зменшенні температури газу частинки великої фракції можуть займатися раніше, ніж частинки дрібної фракції. При високих температурах газу навпаки: період індукції дрібних частинок значно перевищує період індукції частинок великої фракції. Знайдено критичні параметри займання двофракційного газозавису. Основними характеристиками горіння є час і температура горіння частинок. Доведено, що в умовах двофракційного газозавису час горіння частинок мало залежить від температури газу. Також встановлено, що в області низьких температур газу температура горіння частинок дрібної фракції менше, ніж великої. Це пояснюється великим тепловідводом від дрібних частинок молекулярно- конвективним шляхом і недостачею окислювача на стадії горіння. Кисень витрачається на горіння великих частинок, які при низьких температурах спалахують раніше. Знайдено часи горіння частинок великої і дрібної фракцій газозавису.