Каскадные нейро-нечеткие сети в задачах прогнозирования на рынках ценных бумаг
Рассмотрена проблема прогнозирования на рынках ценных бумаг. Для решения этой задачи предложено использование каскадных нео-фаззинейронных сетей (CNFNN). Рассмотрены архитектура нео-фаззи нейрона и архитектура CNFNN. Описаны алгоритмы обучения нео-фаззи-нейронной сети в пакетном и он-лайновом режима...
Gespeichert in:
| Veröffentlicht in: | Системні дослідження та інформаційні технології |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2017
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/151165 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Каскадные нейро-нечеткие сети в задачах прогнозирования на рынках ценных бумаг / Ю.П. Зайченко, Г.И. Гамидов // Системні дослідження та інформаційні технології. — 2017. — № 2. — С. 92-102. — Бібліогр.: 4 назв. — рос. |