The upper edge-to-vertex detour number of a graph
For two vertices u and v in a graph G = (V, E), the detour distance D(u, v) is the length of a longest u-v path in G. A u-v path of length D(u, v) is called a u-v detour. For subsets A and B of V, the detour distance D(A, B) is defined as D(A, B) = min{D(x, y): x ∈ A, y ∈ B}. A u-v path of length D(...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2012 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2012
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/152187 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The upper edge-to-vertex detour number of a graph / A.P. Santhakumaran, S. Athisayanathan // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 128–138. — Бібліогр.: 9 назв. — англ. |