On radical square zero rings

Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modu...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2012
Main Authors: Ringel, C.M., Xiong, B.-L.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152245
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine