On radical square zero rings
Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modu...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2012 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/152245 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. |