On radical square zero rings
Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modu...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2012 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2012
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/152245 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152245 |
|---|---|
| record_format |
dspace |
| spelling |
Ringel, C.M. Xiong, B.-L. 2019-06-09T06:14:14Z 2019-06-09T06:14:14Z 2012 On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. 1726-3255 2010 MSC:16D90, 16G10; 16G70. https://nasplib.isofts.kiev.ua/handle/123456789/152245 Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On radical square zero rings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On radical square zero rings |
| spellingShingle |
On radical square zero rings Ringel, C.M. Xiong, B.-L. |
| title_short |
On radical square zero rings |
| title_full |
On radical square zero rings |
| title_fullStr |
On radical square zero rings |
| title_full_unstemmed |
On radical square zero rings |
| title_sort |
on radical square zero rings |
| author |
Ringel, C.M. Xiong, B.-L. |
| author_facet |
Ringel, C.M. Xiong, B.-L. |
| publishDate |
2012 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152245 |
| fulltext |
|
| citation_txt |
On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT ringelcm onradicalsquarezerorings AT xiongbl onradicalsquarezerorings |
| first_indexed |
2025-11-24T11:44:42Z |
| last_indexed |
2025-11-24T11:44:42Z |
| _version_ |
1850846098232442880 |