On radical square zero rings

Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modu...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2012
Main Authors: Ringel, C.M., Xiong, B.-L.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152245
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152245
record_format dspace
spelling Ringel, C.M.
Xiong, B.-L.
2019-06-09T06:14:14Z
2019-06-09T06:14:14Z
2012
On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ.
1726-3255
2010 MSC:16D90, 16G10; 16G70.
https://nasplib.isofts.kiev.ua/handle/123456789/152245
Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On radical square zero rings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On radical square zero rings
spellingShingle On radical square zero rings
Ringel, C.M.
Xiong, B.-L.
title_short On radical square zero rings
title_full On radical square zero rings
title_fullStr On radical square zero rings
title_full_unstemmed On radical square zero rings
title_sort on radical square zero rings
author Ringel, C.M.
Xiong, B.-L.
author_facet Ringel, C.M.
Xiong, B.-L.
publishDate 2012
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let Λ be a connected left artinian ring with radical square zero and with n simple modules. If Λ is not self-injective, then we show that any module M with Exti(M, Λ) = 0 for 1 ≤ i ≤ n + 1 is projective. We also determine the structure of the artin algebras with radical square zero and n simple modules which have a non-projective module M such that Exti(M, Λ) = 0 for 1 ≤ i ≤ n.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/152245
fulltext
citation_txt On radical square zero rings / C.M. Ringel, B.-L. Xiong // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 297–306. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT ringelcm onradicalsquarezerorings
AT xiongbl onradicalsquarezerorings
first_indexed 2025-11-24T11:44:42Z
last_indexed 2025-11-24T11:44:42Z
_version_ 1850846098232442880