Generalised triangle groups of type (3, q, 2)

If G is a group with a presentation of the form ⟨x, y|x³ = yq = W(x, y)² = 1⟩, then either G is virtually soluble or G contains a free subgroup of rank 2. This provides additional evidence in favour of a conjecture of Rosenberger.

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
1. Verfasser: Howie, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2013
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/152259
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Generalised triangle groups of type (3, q, 2) / J. Howie // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 1–18. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152259
record_format dspace
fulltext
spelling nasplib_isofts_kiev_ua-123456789-1522592025-02-23T19:46:13Z Generalised triangle groups of type (3, q, 2) Howie, J. If G is a group with a presentation of the form ⟨x, y|x³ = yq = W(x, y)² = 1⟩, then either G is virtually soluble or G contains a free subgroup of rank 2. This provides additional evidence in favour of a conjecture of Rosenberger. 2013 Article Generalised triangle groups of type (3, q, 2) / J. Howie // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 1–18. — Бібліогр.: 22 назв. — англ. 1726-3255 2010 MSC:20F05, 20F06, 20E05. https://nasplib.isofts.kiev.ua/handle/123456789/152259 en Algebra and Discrete Mathematics application/pdf Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description If G is a group with a presentation of the form ⟨x, y|x³ = yq = W(x, y)² = 1⟩, then either G is virtually soluble or G contains a free subgroup of rank 2. This provides additional evidence in favour of a conjecture of Rosenberger.
format Article
author Howie, J.
spellingShingle Howie, J.
Generalised triangle groups of type (3, q, 2)
Algebra and Discrete Mathematics
author_facet Howie, J.
author_sort Howie, J.
title Generalised triangle groups of type (3, q, 2)
title_short Generalised triangle groups of type (3, q, 2)
title_full Generalised triangle groups of type (3, q, 2)
title_fullStr Generalised triangle groups of type (3, q, 2)
title_full_unstemmed Generalised triangle groups of type (3, q, 2)
title_sort generalised triangle groups of type (3, q, 2)
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url https://nasplib.isofts.kiev.ua/handle/123456789/152259
citation_txt Generalised triangle groups of type (3, q, 2) / J. Howie // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 1–18. — Бібліогр.: 22 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT howiej generalisedtrianglegroupsoftype3q2
first_indexed 2025-11-24T16:49:06Z
last_indexed 2025-11-24T16:49:06Z
_version_ 1849691153846239232