Generalised triangle groups of type (3, q, 2)
If G is a group with a presentation of the form ⟨x, y|x³ = yq = W(x, y)² = 1⟩, then either G is virtually soluble or G contains a free subgroup of rank 2. This provides additional evidence in favour of a conjecture of Rosenberger.
Gespeichert in:
| Datum: | 2013 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2013
|
| Schriftenreihe: | Algebra and Discrete Mathematics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/152259 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Generalised triangle groups of type (3, q, 2) / J. Howie // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 1–18. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152259 |
|---|---|
| record_format |
dspace |
| fulltext |
|
| spelling |
nasplib_isofts_kiev_ua-123456789-1522592025-02-23T19:46:13Z Generalised triangle groups of type (3, q, 2) Howie, J. If G is a group with a presentation of the form ⟨x, y|x³ = yq = W(x, y)² = 1⟩, then either G is virtually soluble or G contains a free subgroup of rank 2. This provides additional evidence in favour of a conjecture of Rosenberger. 2013 Article Generalised triangle groups of type (3, q, 2) / J. Howie // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 1–18. — Бібліогр.: 22 назв. — англ. 1726-3255 2010 MSC:20F05, 20F06, 20E05. https://nasplib.isofts.kiev.ua/handle/123456789/152259 en Algebra and Discrete Mathematics application/pdf Інститут прикладної математики і механіки НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
If G is a group with a presentation of the form ⟨x, y|x³ = yq = W(x, y)² = 1⟩, then either G is virtually soluble or G contains a free subgroup of rank 2. This provides additional evidence in favour of a conjecture of Rosenberger. |
| format |
Article |
| author |
Howie, J. |
| spellingShingle |
Howie, J. Generalised triangle groups of type (3, q, 2) Algebra and Discrete Mathematics |
| author_facet |
Howie, J. |
| author_sort |
Howie, J. |
| title |
Generalised triangle groups of type (3, q, 2) |
| title_short |
Generalised triangle groups of type (3, q, 2) |
| title_full |
Generalised triangle groups of type (3, q, 2) |
| title_fullStr |
Generalised triangle groups of type (3, q, 2) |
| title_full_unstemmed |
Generalised triangle groups of type (3, q, 2) |
| title_sort |
generalised triangle groups of type (3, q, 2) |
| publisher |
Інститут прикладної математики і механіки НАН України |
| publishDate |
2013 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152259 |
| citation_txt |
Generalised triangle groups of type (3, q, 2) / J. Howie // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 1–18. — Бібліогр.: 22 назв. — англ. |
| series |
Algebra and Discrete Mathematics |
| work_keys_str_mv |
AT howiej generalisedtrianglegroupsoftype3q2 |
| first_indexed |
2025-11-24T16:49:06Z |
| last_indexed |
2025-11-24T16:49:06Z |
| _version_ |
1849691153846239232 |