MGMT expression: insights into its regulation. 1. Epigenetic factors
O⁶-methylguanine-DNA methyltransferase (MGMT) is the DNA repair enzyme responsible for removing of alkylation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- a...
Збережено в:
| Дата: | 2013 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2013
|
| Назва видання: | Вiopolymers and Cell |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/152497 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | MGMT expression: insights into its regulation. 1. Epigenetic factors / A.P. Iatsyshyna // Вiopolymers and Cell. — 2013. — Т. 29, №. 2. — С. 99-106. — Бібліогр.: 52 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-152497 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1524972025-02-09T13:30:46Z MGMT expression: insights into its regulation. 1. Epigenetic factors Експресія гена MGMT: розуміння її регуляції. 1. Епігенетичні фактори Экспрессия гена MGMT: понимание ее регуляции. 1. Эпигенетические факторы Iatsyshyna, A.P. Reviews O⁶-methylguanine-DNA methyltransferase (MGMT) is the DNA repair enzyme responsible for removing of alkylation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- and inter-individual variations in the human MGMT expression level have been observed indicating to a complicated regulation of this gene. This review is focused on the study of epigenetic factors which could be potentially involved in regulation of the human MGMT gene expression. These include chromatin remodeling via histone modifications and DNA methylation of promoter region and gene body, as well as RNA-based mechanisms, alternative splicing, protein post- translational modifications, and other. О⁶-метилгуанін-ДНК метилтрансфераза (MGMT) – це репаративний фермент, який видаляє алкільні адукти з О6-гуаніну в ДНК. Незважаючи на те, що MGMT запобігає появі мутацій і клітинній смерті, він також забезпечує стійкість ракових клітин до алкілувальних сполук за хіміотерапії. Спостерігають значні внутрішньо- та міжіндивідуальну коливання у рівнях експресії MGMT, що вказує на складну систему регуляції даного гена. Представлений огляд присвячений вивченню епігенетичних факторів, які можуть бути потенційно залучені до регуляції експресії гена MGMT людини. До них належать ремоделювання хроматину за рахунок модифікацій гістонів і метилювання ДНК промоторної ділянки та тіла гена, а також РНК-регуляторні механізми, альтернативний сплайсинг, посттрансляційні модифікації білка тощо. О⁶-метилгуанин-ДНК метилтрансфераза (MGMT) – это фермент репарации ДНК, ответственный за удаление алкильных аддуктов из О6-гуанина в ДНК. Несмотря на то, что MGMT предохраняет от появления мутаций и клеточной гибели, этот фермент может также обеспечивать устойчивость раковых клеток к алкилирующим соединениям при химиотерапии. Обнаружены высокие внутри- и межиндивидуальные вариации в уровнях экспрессии MGMT, что указывает на сложную систему регуляции этого гена. Данный обзор посвящен изучению эпигенетических факторов, которые потенциально могут участвовать в регуляции экспрессии гена MGMT человека. Среди них ремоделирование хроматина с помощью модификации гистонов и метилирования ДНК промоторного участка и тела гена, а также РНК- регуляторные механизмы, альтернативный сплайсинг, посттрансляционные модификаии белка и др. 2013 Article MGMT expression: insights into its regulation. 1. Epigenetic factors / A.P. Iatsyshyna // Вiopolymers and Cell. — 2013. — Т. 29, №. 2. — С. 99-106. — Бібліогр.: 52 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00080C https://nasplib.isofts.kiev.ua/handle/123456789/152497 577.21:577.218 en Вiopolymers and Cell application/pdf Інститут молекулярної біології і генетики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Reviews Reviews |
| spellingShingle |
Reviews Reviews Iatsyshyna, A.P. MGMT expression: insights into its regulation. 1. Epigenetic factors Вiopolymers and Cell |
| description |
O⁶-methylguanine-DNA methyltransferase (MGMT) is the DNA repair enzyme responsible for removing of alkylation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- and inter-individual variations in the human MGMT expression level have been observed indicating to a complicated regulation of this gene. This review is focused on the study of epigenetic factors which could be potentially involved in regulation of the human MGMT gene expression. These include chromatin remodeling via histone modifications and DNA methylation of promoter region and gene body, as well as RNA-based mechanisms, alternative splicing, protein post- translational modifications, and other. |
| format |
Article |
| author |
Iatsyshyna, A.P. |
| author_facet |
Iatsyshyna, A.P. |
| author_sort |
Iatsyshyna, A.P. |
| title |
MGMT expression: insights into its regulation. 1. Epigenetic factors |
| title_short |
MGMT expression: insights into its regulation. 1. Epigenetic factors |
| title_full |
MGMT expression: insights into its regulation. 1. Epigenetic factors |
| title_fullStr |
MGMT expression: insights into its regulation. 1. Epigenetic factors |
| title_full_unstemmed |
MGMT expression: insights into its regulation. 1. Epigenetic factors |
| title_sort |
mgmt expression: insights into its regulation. 1. epigenetic factors |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| publishDate |
2013 |
| topic_facet |
Reviews |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/152497 |
| citation_txt |
MGMT expression: insights into its regulation. 1. Epigenetic factors / A.P. Iatsyshyna // Вiopolymers and Cell. — 2013. — Т. 29, №. 2. — С. 99-106. — Бібліогр.: 52 назв. — англ. |
| series |
Вiopolymers and Cell |
| work_keys_str_mv |
AT iatsyshynaap mgmtexpressioninsightsintoitsregulation1epigeneticfactors AT iatsyshynaap ekspresíâgenamgmtrozumínnâííregulâcíí1epígenetičnífaktori AT iatsyshynaap ékspressiâgenamgmtponimanieeeregulâcii1épigenetičeskiefaktory |
| first_indexed |
2025-11-26T05:10:12Z |
| last_indexed |
2025-11-26T05:10:12Z |
| _version_ |
1849828384467582976 |
| fulltext |
UDC 577.21:577.218
MGMT expression: insights into its regulation.
1. Epigenetic factors
A. P. Iatsyshyna
Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnogo Str., Kyiv, Ukraine, 03680
a.p.iatsyshyna@imbg.org.ua
O6-methylguanine-DNA methyltransferase (MGMT) is the DNA repair enzyme responsible for removing of alky-
lation adducts from the O6-guanine in DNA. Despite MGMT prevents mutations and cell death, this enzyme can
provide resistance of cancer cells to alkylating agents of chemotherapy. The high intra- and inter-individual va-
riations in the human MGMT expression level have been observed indicating to a complicated regulation of this
gene. This review is focused on the study of epigenetic factors which could be potentially involved in regulation of
the human MGMT gene expression. These include chromatin remodeling via histone modifications and DNA me-
thylation of promoter region and gene body, as well as RNA-based mechanisms, alternative splicing, protein post-
translational modifications, and other.
Keywords: O6-methylguanine-DNA methyltransferase (MGMT), epigenetic regulation of gene expression, me-
thylation, chromatin remodeling.
Introduction. O6-methylguanine-DNA methyltransfe-
rase (MGMT) is the DNA repair enzyme responsible for
removing alkylation adducts from the O6-position of
guanine in DNA by mechanism of so-called «suicidal»
reaction [1–3]. MGMT is irreversibly inactivated after
binding of alkyl group to cysteine, so the synthesis of
molecules of MGMT de novo is required for further
DNA repair. Despite this enzyme prevents mutations
and cell death, it can provide resistance of cancer cells to
alkylating agents, which are frequently used in the che-
motherapy of many types of cancer [3, 4]. Thus, the ex-
pression of MGMT and its activity in human tumors can
determine cell response to therapies with alkylating
agents. However, levels of the MGMT expression are
highly variable among normal tissues within an indivi-
dual, among different tumors, between cells within a tis-
sue or tumor, as well as between individuals within one
tissue [2, 5]. The MGMT expression variation with re-
versible loss has been also revealed during long-term in
vitro cultivation of cells [5–9].
Observed variations of the MGMT expression level
indicate a complicated regulation of this gene, but mo-
lecular basis of intra- and inter-individual variations is
still not fully defined. Therefore, the aim of this paper
is to review epigenetic factors which could be poten-
tially involved in regulation of the human MGMT ex-
pression.
This article is the first part of a thematic series on re-
gulation of MGMT expression and is devoted to the
epigenetic regulation. The next two parts are about
genetic factors regulating MGMT expression.
Epigenetic regulation of gene expression includes
several mechanisms, in particular DNA methylation,
histone packaging and modifications, RNA-based me-
chanisms, post-translational modifications of protein,
and other factors. To date, the Encyclopedia of DNA
Elements (ENCODE) Consortium aims to build a com-
prehensive data list of functional regulatory elements in
the human genome which is freely available for down-
load and analysis [10]. Most of discussed in this review
experimental data, related to regulatory elements wi-
thin human MGMT, were taken from ENCODE project
99
ISSN 0233–7657. Biopolymers and Cell. 2013. Vol. 29. N 2. P. 99–106 doi: 10.7124/bc.00080C
Institute of Molecular Biology and Genetics, NAS of Ukraine, 2013
100
at the UCSC Genome Browser (the University of Cali-
fornia Santa Cruz, http://genome.ucsc.edu/), Genome
Reference Consortium Human Build 37 (GRCh37, or
hg19 assembly, submitted in February 2009) [10, 11].
O6-alkylguanine-DNA alkyltransferases. During
lifespan cells are under the influence of different endo-
genous and exogenous stress factors, which can damage
the genomic DNA including the alkylation. The various
sites of alkylation have been revealed, but alkylation of
guanine at the O6-position, in despite of its minority, is
cytotoxic, has the strongest mutagenic potential, as
well as can cause tumor development [2, 12, 13]. Diffe-
rent pathways of DNA repair were evolved in mamma-
lian cells for self-defence from toxic and mutagenic ef-
fects [14]. O6-Alkylguanine-DNA alkyltransferase (of-
ficial name O6-methylguanine-DNA methyltransfera-
se, MGMT) is the DNA repair enzyme responsible for
removing alkylation adducts from DNA [1–3]. The al-
kyltransferases are widely expanded among over 100
different species from Archaea and Bacteria to many
organisms of Eukarya including humans, but not in Plan-
tae, fission yeast Schizosaccharomyces pombe and bac-
terium Deinococcus radiodurans [15]. At the same time
MGMT is highly conservative that evidences this alkyl-
transferase has a great importance for genomic integri-
ty (see alignments of sequences of the alkyltransferase
and alkyltransferase like proteins in reviews [5, 15]).
This enzyme belongs to the direct repair pathway, it
removes alkyl groups (such as methyl-, ethyl-, chlo-
roethyl-group a. o.) without DNA lesion transferring
them to an own cysteine residue by mechanism of the so-
called «suicidal» reaction, namely MGMT is irreversib-
ly inactivated after binding alkyl group to cysteine, so
the synthesis of MGMT molecules de novo is required
for further DNA repair. The capacity of cells to repair
the O6-alkylguanine depends on the level of MGMT in
cell or the rate at which a cell can synthesize this enzyme.
Though MGMT prevents mutations and cell death, this
enzyme can provide resistance of cancer cells to alkyla-
ting agents, which are frequently used in the chemothe-
rapy of many types of cancer [3, 4].
Thus, the expression of MGMT and its activity in
human tumors can determine cell response to therapies
with alkylating agents.
Intra- and inter-individual variations of MGMT
expression. The MGMT gene is ubiquitously expres-
sed in mammals, but the level of its expression widely
varies depending on the type of cell or tissue, cell cycle
phase, developmental stage of organism, as well as on
species [2, 5, 16]. For example, a high level of the inter-
and intra-individual variability of the MGMT expression
has been revealed in peripheral blood mononuclear cells
from healthy individuals [17]. A substantial variation
of the amount of MGMT activity has been also revea-
led in all examined normal and tumor tissues from rats
and humans, as well as individual MGMT variations in
the human samples [16]. Variation of the MGMT acti-
vity level in human normal and tumor tissues, as well as
in human lymphocytes is reviewed in [5].
The tissue-specific variation of the human MGMT
activity has been shown. For example, the highest level
of expression was usually detected in the liver, follow-
ed by the colon and lung, and low – in the brain and
myeloid tissues [5, 16, 18], while the lowest expression
was detected in hematopoietic (CD34+) progenitor cells
[2]. In tumors the highest level of MGMT expression
was observed in the breast, colon, lung and ovarian tu-
mors, and the lowest – in the gliomas, malignant mela-
nomas, pancreatic carcinomas and testis tumors [2].
The MGMT expression is widely varied in immorta-
lized mammalian cells. It has been supposed that this va-
riability in cultered cells reflects the MGMT expression
level in the tissue from which they were obtained [5,
8]. For example, such correlation was revealed for the
cell lines of lymphoblastoid cells derived from the peri-
pheral blood lymphocytes [6]. Moreover, it has been
shown that levels of the MGMT vary during long-term
in vitro cultivation of cells [6, 9], and decrease in the
MGMT expression can be reversible [7]. In particular,
the lymphoblastoid cell lines are loosing the MGMT
activity compared with the cells at early passages of in
vitro cultivation [8]. Cell cycle dependent variation of
MGMT in cultured mammalian cells is discussed in
[5]. In our investigations fluctuations of MGMT pro-
tein level during long-term in vitro cultivation of the
cell lines derived from mouse embryonic germ cells has
been also revealed [9].
Epigenetic regulation of the MGMT expression.
Observed variations of the MGMT expression indicate
a complicated regulation of this gene. Genetic, epige-
netic and environmental factors may affect the gene ex-
pression, and the human MGMT gene is no exception.
IATSYSHYNA A. P.
Epigenetic changes can concern chromatin structure
via histone modifications and methylation of promoter
region and gene body, as well as RNA interference, al-
ternative splicing, and post-translational modifications
of the MGMT protein.
DNA methylation and chromatin remodeling. T h e
MGMT p r o m o t e r c o n t a i n s t h e CpG i s l a n d
(CGI). A predicted CGI is located at position chr10:
131264949-131265710 in hg19/Human [10]. The size
of CGI is 762 bps. It contains 75 CpG dinucleotides and
overlaps with the transcription start site (TSS) and 5'-
flanking sequence of the gene (Fig. 1). The location of
TSSs helps to define the promoter regions. TSS of the
human MGMT gene (Fig. 1) was determined by Switch
Gear Genomics by integrating experimental data using
an empirically derived scoring function [10]. This TSS
(CHR10_P0807_R1) has position chr10:131265479 in
the plus-strand DNA of 10q26 chromosome band, whe-
reas the RefSeq MGMT gene is located at chr10:
131265454-131565783 (NM_002412) [10].
CGIs are typically common near or overlapping TSSs
and may be associated with promoter regions [19]. In
case of the MGMT promoter TSS is located within detec-
ted CGI. Approximately 70 % of promoters of vertebra-
tes contain CGI, mainly they are promoters of virtually
all housekeeping genes, as well as a part of tissue-speci-
fic genes and developmental regulator genes [20]. Ac-
cording to promoter types indicated in [19], so-called
housekeeping genes with broad expression throughout
organismal cycle have promoters of ubiquitous type,
which are characterized by dispersed TSSs and ordered
nucleosome configuration; they are TATA-depleted and
have CGIs. The promoter region of human MGMT gene
is known to be GC-rich and TATA-free [21]. Since pro-
moters function as sites of transcription initiation by
binding and correct positioning of the transcription ini-
tiation complex [19], the binding of transcription factors
(TFs) with cis-regulatory elements within promoter al-
ters the local chromatin structure, creating open chroma-
tin regions [22]. These regions can be identified by de-
oxyribonuclease I (DNaseI) hypersensitive site (DHS)
mapping [22]. DHS tracks in Fig. 1 display the location
of active cis-regulatory elements identified as open
chromatin within promoter region of the MGMT gene in
different cell lines [10]. Three DNase clusters are shown
from this track in Fig. 1 [10].
Thus, as shown in Fig. 1, the promoter region of hu-
man MGMT gene contains TSS, which is located within
CGI, DHS and exon 1 of the gene. Overlapping of CGI
and DHS marks the open chromatin region and the loca-
tion of active cis-regulatory elements. The ENCODE
studies of different cell lines demonstrated that MGMT
promoter can be targeted by several TFs in this region
(Fig. 1). The track of TF ChIP-seq shows regions where
TFs bind to DNA as assayed by ChIP-seq (chromatin
immunoprecipitation (ChIP) assay in combination with
sequencing).
The track in Fig. 2, B (see inset), shows nucleo-
some position by MNase-seq in the MGMT promoter
region in K562 cell line [10]. DHS, which overlaps
with CGI and TFs binding regions, lies in a linker DNA
area and is framed by nucleosomes (Fig. 1, Fig. 2, see in-
set), thus, providing accessibility of DNA to regulatory
proteins in the cells expressing gene.
101
MGMT EXPRESSION: INSIGHTS INTO ITS REGULATION. 1. EPIGENETIC FACTORS
A
B
Fig. 1. Cis-regulatory elements within the human MGMT promoter region: A – chromosome 10 ideogram; B – integrated regulation tracks from
ENCODE (1 – RefSeq Gene; 2 – the location of TSS of the human MGMT gene on track from SwitchGear Genomics (CHR10_P0807_R1); 3 –
DNaseI hypersensitive regions, marked as gray and dark boxes, darkness of which is proportional to the maximum signal strength observed in any
cell line; the number to the left of the box shows how many cell lines are hypersensitive in the region; 4 – the track of transcription factor ChIP-seq,
which shows regions where TFs bind to DNA as assayed in different cell lines; the darkness of the box is proportional to the maximum signal
strength observed in any cell line; 5 – CGI, shown as dark green box)
ISSN 0233-7657. Biopolymers and Cell. 2013. Vol. 29. N 2
F
ig
.
3.
H
is
to
ne
M
o
di
fi
ca
ti
o
ns
w
it
hi
n
th
e
hu
m
an
M
G
M
T
p
ro
m
ot
er
r
eg
io
n
in
H
ep
G
2
ce
ll
s
by
C
hI
P
-s
eq
f
ro
m
E
N
C
O
D
E
/B
ro
ad
I
ns
ti
tu
te
[
10
].
R
ef
S
eq
hu
m
an
M
G
M
T
g
en
e
is
m
ar
ke
d
b
y
da
rk
b
lu
e
co
lo
r.
T
h
e
lo
ca
ti
on
o
f
T
S
S
o
n
tr
ac
k
fr
om
S
w
it
ch
G
ea
r
G
en
om
ic
s
is
m
ar
ke
d
by
r
ed
.
D
N
as
eI
h
yp
er
se
ns
it
iv
e
si
te
s
(D
H
S
s)
a
re
m
ar
ke
d
as
g
ra
y
an
d
da
rk
b
ox
es
,
da
rk
n
es
s
of
w
h
ic
h
is
pr
op
or
ti
on
al
t
o
th
e
m
ax
im
um
s
ig
na
l
st
re
n
gt
h
o
b
se
rv
ed
i
n
an
y
ce
ll
l
in
e.
T
he
nu
m
be
r
to
th
e
le
ft
o
f
th
e
bo
x
sh
o
w
s
h
ow
m
an
y
ce
ll
li
n
es
a
re
h
y
pe
rs
en
si
ti
ve
in
th
e
re
gi
on
. C
G
I
is
s
h
ow
n
as
d
ar
k
g
re
en
b
ox
. H
is
to
ne
m
od
if
ic
at
io
n
tr
ac
ks
a
re
co
lo
re
d
in
p
in
k.
H
3K
4m
e3
,
H
3K
9a
c,
a
nd
H
3
K
27
ac
a
re
a
ss
oc
ia
te
d
w
it
h
tr
an
sc
ri
pt
io
na
l
in
it
ia
ti
o
n
an
d
op
en
c
h
ro
m
at
in
s
tr
uc
tu
re
,
an
d
m
ar
k
ac
ti
v
e
or
po
is
ed
t
o
be
a
ct
iv
at
ed
p
ro
m
ot
er
s.
H
3
K
9
m
e3
a
nd
H
3K
27
m
e3
a
re
a
ss
oc
ia
te
d
w
it
h
re
pr
es
si
ve
h
et
er
oc
hr
om
at
ic
s
ta
te
(m
ar
k
si
le
nc
ed
c
hr
o
m
at
in
re
gi
on
s)
.
F
ig
u
re
s
to
a
rt
ic
le
b
y
Ia
ts
ys
hy
n
a
A
. P
.
A B
K
56
2
H
eL
a-
S
3
H
ep
G
2
M
C
F
-7
H
E
K
29
3
H
ep
at
o
cy
te
H
e
p
G
2
1
S
c
a
le
c
h
r1
0
:
D
N
a
s
e
C
lu
s
te
rs
T
x
n
F
a
c
to
r
C
h
IP
C
p
G
I
s
la
n
d
s
K
5
6
2
1
M
C
F
–
7
1
H
e
p
a
to
c
y
te
s
1
H
e
L
a
–
S
3
1
K
5
6
2
S
ig
8 0
S
c
a
le
c
h
r1
0
:
C
p
G
I
s
la
n
d
s
1
3
1
,2
6
4
,0
0
0
1
3
1
,3
0
0
,0
0
0
1
3
1
,2
6
4
,5
0
0
1
3
1
,4
0
0
,0
0
0
1
3
1
,3
5
0
,0
0
0
1
3
1
,4
5
0
,0
0
0
1
3
1
,5
0
0
,5
0
0
1
3
1
,5
5
0
,5
0
0
C
p
G
I
s
la
n
d
s
(
Is
la
n
d
s
<
3
0
0
B
a
s
e
s
a
re
l
ig
h
t
G
re
e
n
)
H
e
p
G
2
M
e
h
y
l-
R
R
B
S
R
e
p
1
f
ro
m
E
N
C
O
D
E
/H
u
d
s
o
n
A
1
p
h
a
H
e
p
G
2
M
e
th
y
la
ti
o
n
4
5
0
K
B
e
a
d
A
rr
a
y
f
ro
m
E
N
C
O
D
E
/H
A
IB
R
e
fS
e
g
G
e
n
e
s
R
e
fS
e
g
G
e
n
e
s
T
ra
n
s
c
ri
p
ti
o
n
L
e
v
e
ls
A
s
s
a
y
e
d
b
y
R
N
A
-s
e
q
o
n
9
C
e
ll
L
in
e
s
f
ro
m
E
N
C
O
D
E
T
ra
n
s
c
ri
p
ti
o
n
F
a
c
to
r
C
h
IP
-s
e
q
f
ro
m
E
N
C
O
D
E
D
N
A
M
e
th
y
la
ti
o
n
b
y
R
e
d
u
c
e
d
R
e
p
re
s
e
n
ta
ti
o
n
B
is
u
lf
it
e
S
e
q
f
ro
m
E
N
C
O
D
E
/H
u
d
s
o
n
A
lp
h
a
D
ig
it
a
l
D
N
a
s
e
I
H
y
p
e
rs
e
n
s
it
iv
it
y
C
lu
s
te
rs
i
n
1
2
5
c
e
ll
t
y
p
e
s
f
ro
m
E
N
C
O
D
E
C
p
G
M
e
th
y
la
ti
o
n
b
y
M
e
th
y
l
4
5
0
K
B
e
a
d
A
rr
a
y
s
f
ro
m
E
N
C
O
D
E
/H
A
IB
K
5
6
2
N
u
c
le
o
s
o
m
e
S
ig
n
a
l
fr
o
m
E
N
C
O
D
E
/S
ta
n
fo
rd
/B
Y
U
C
p
G
I
s
la
n
d
s
(
Is
la
n
d
s
<
3
0
0
B
a
s
e
s
a
re
l
ig
h
t
G
re
e
n
)
1
3
1
,2
6
5
,0
0
0
1
3
1
,2
6
5
,5
0
0
1
3
1
,2
6
6
,0
0
0
1
k
b
h
g
1
9
1
0
0
k
b
h
g
1
9
1
3
1
,2
5
0
,0
0
0
1
kb
hg
1
9
M
G
M
T T
S
S
D
H
S
s
4
8
12
1
4
0
C
G
I
H
3
K
4m
e3
H
3K
9a
c
H
3K
27
ac
H
3
K
9m
e3
H
3K
27
m
e3
5
0
5
0
5
0
5
0
5
01 1 1 1 1
F
ig
.
2.
M
et
hy
la
ti
on
d
at
a
tr
ac
ks
o
f
th
e
hu
m
an
M
G
M
T
g
en
e
fr
om
E
N
C
O
D
E
p
ro
je
ct
[
10
]:
A
–
m
et
hy
la
ti
on
d
at
a
on
t
he
g
en
e
in
H
ep
G
2
ce
ll
s;
B
–
m
et
hy
la
ti
on
s
ta
tu
s
o
f
pr
om
o
te
r
re
gi
on
.
M
et
hy
la
ti
on
t
ra
ck
s
di
sp
la
y
th
e
m
et
hy
la
ti
on
s
ta
tu
s
of
s
pe
ci
fi
c
C
pG
d
in
uc
le
ot
id
es
i
de
nt
if
ie
d
by
R
ed
uc
ed
R
ep
re
se
nt
at
io
n
B
is
ul
fi
te
S
eq
ue
nc
in
g
(R
R
B
S
,
m
et
hy
la
ti
o
n
is
r
ep
re
se
n
te
d
w
it
h
an
11
–
co
lo
r
gr
ad
ie
nt
u
si
ng
th
e
fo
ll
ow
in
g
co
nv
en
ti
on
: r
ed
–
1
00
%
o
f
m
ol
ec
ul
es
s
eq
ue
nc
ed
a
re
m
et
hy
la
te
d,
y
el
lo
w
–
5
0
%
, g
re
en
–
0
%
)
an
d
by
th
e
Il
lu
m
in
a
In
fi
ni
um
H
um
an
M
et
hy
la
ti
on
4
5
0
B
ea
d
A
rr
ay
p
la
tf
or
m
(m
et
hy
la
ti
on
s
ta
tu
s
is
c
ol
or
-c
od
ed
a
s:
o
ra
ng
e
–
m
et
hy
la
te
d,
p
ur
pl
e
–
p
ar
ti
al
ly
m
et
hy
la
te
d,
b
ri
gh
t b
lu
e
–
u
nm
et
hy
la
te
d
) T
he
tr
ac
k
o
f t
ra
ns
cr
ip
ti
o
n
le
v
el
s
is
s
ho
w
n
fo
r H
eL
a,
H
ep
G
2
an
d
K
56
2
ce
ll
li
ne
s
as
a
ss
ay
ed
b
y
hi
gh
-t
hr
ou
gh
pu
t s
eq
ue
nc
in
g
of
p
ol
ya
de
ny
la
te
d
R
N
A
(
R
N
A
-s
eq
).
E
ac
h
of
th
e
ce
ll
li
ne
s
is
a
ss
oc
ia
te
d
w
it
h
a
p
ar
ti
cu
la
r
co
lo
r,
in
p
ar
ti
cu
la
r
ye
ll
o
w
–
H
eL
a-
S
3,
g
re
en
–
H
ep
G
2,
b
lu
e
–
K
56
2.
D
N
as
eI
h
yp
er
se
ns
it
iv
it
y
cl
us
te
rs
a
re
m
ar
ke
d
as
g
re
y
an
d
da
rk
b
ox
es
, d
ar
kn
es
s
of
w
hi
ch
is
p
ro
po
rt
io
na
l t
o
th
e
m
ax
im
um
s
ig
n
al
s
tr
en
gt
h
ob
se
rv
ed
in
a
ny
ce
ll
li
ne
. T
he
tr
ac
k
of
T
F
C
hI
P
-s
eq
s
ho
w
s
re
gi
on
s
w
he
re
T
F
s
bi
nd
to
D
N
A
. C
G
I i
s
m
ar
ke
d
as
d
ar
k
bo
x.
T
he
tr
ac
k
of
N
uc
le
os
om
e
S
ig
na
l b
y
M
N
as
e-
se
q
is
s
ho
w
n
fo
r K
56
2
ce
ll
s
It is well known that DNA methylation at the CGI
of promoters plays a key role in the epigenetic silencing
of tumor suppressor genes. It was shown that MGMT is
epigenetically silenced in various human cancer types,
too. It is demonstrated on an example of more than 500
primary human tumors, cancer cell lines, and normal tis-
sues that hypermethylation of the MGMT promoter, asso-
ciated with the loss of expression, is frequent [23, 24].
Among examined human neoplasias, the MGMT hyper-
methylation was found in about 40 % of brain tumors
and colorectal carcinomas. Approximately 25 % of non-
small cell lung carcinomas, lymphomas, and head and
neck carcinomas also showed the MGMT hypermethy-
lation, while some types of tumors had infrequent the
MGMT promoter methylation (e. c. pancreatic carcino-
mas, melanomas, renal carcinomas, acute leukemias,
bladder carcinomas) or had not at all the MGMT methy-
lation in other cancer types (e. c. carcinomas of breast,
endometrium, ovary, liver, small cells of lung) [24, 25].
It has been shown that immortal cell lines with the
methylated MGMT promoter are more sensitive to al-
kylating agents [26], and the MGMT-deficient tumors
with the methylated promoter also show an increased
sensitivity to such drugs [27]. The MGMT promoter me-
thylation was revealed to be associated with the tumor
regression and prolonged overall and disease-free sur-
vival of 40 % of patients with gliomas, which had the
methylated promoter and were treated with the alkyla-
ting agent carmustine (or BCNU) [27]. The MGMT pro-
moter hypermethylation was shown to correlate with a
statistically significant increase in survival of patients
with diffuse large B-cell lymphoma after treatment
with cyclophosphamide as part of multidrug regimen,
too [28]. Thereby, it seems that the MGMT promoter
methylation can be a useful clinical predictive marker of
the responsiveness of tumors to alkylating agents and
patient survival [28–30]. However, the MGMT gene si-
lencing in tumors causes an accumulation of point muta-
tions resulting in genomic instability and determining
disease outcome [31]. For example, it has been revealed
that the MGMT promoter methylation was significant-
ly associated with point mutations of the K-ras gene in
patients with gastric carcinoma, as well as with patient
survival [32].
Methylation of cytosines in the body of the MGMT
gene and in its promoter results in opposite effects. For
example, methylation of promoter region is associated
with the loss of MGMT expression [23, 33, 34], whilst
methylation of downstream sequences in the gene body
correlates with an increased expression [33, 35, 36]. It
has been shown that most gene bodies are CpG-poor
and extensively methylated, that is a feature of transcri-
bed genes and is not associated with repression of trans-
cription elongation [37]. The MGMT body does not con-
tain any predicted CGI (accordingly to the general CGI
criteria) and is methylated, for example, in HepG2 cell
line expressing this gene (Fig. 2, A, see inset), and this
observation is consistent with a feature of actively trans-
cribed genes [37]. Possible functions of the gene body
methylation are discussed in [37].
Also, it has been demonstrated that the methylation
of CGI of MGMT is associated with the gene suppres-
sion, and it is generally incomplete, localizing in a core
promoter region around TSS, creating hot spots of me-
thylation [23].
C h r o m a t i n s t r u c t u r e r e l a t e d t o t h e
m e t h y l a t i o n o f t h e MGMT p r o m o t e r.
Silencing the CGI-containing genes is correlated with
increased cytosine methylation, closed chromatin struc-
ture, and exclusion of TF binding in the CGI of promo-
ters [37]. Many studies indicate that the methylation of
CpGs represses the transcription via recruitment of his-
tone deacetylase complexes by methyl-CpG binding pro-
teins, and as consequence the chromatin condensation
[37]. It has been reported that histone deacetylation
plays a role in the MGMT silencing, too [38, 39].
The importance of histone modifications in epige-
netic regulation of the human MGMT gene, such as ace-
tylation and methylation of residues, due to chromatin
structure changes was shown in many studies. In parti-
cular, inactivation of the MGMT gene transcription was
demonstrated to be associated with the loss of open chro-
matin structure and exclusion of TFs from Sp1-like bin-
ding sites within the CGI, but not with methylation of
the TF binding region [40]. The chromatin condensa-
tion after CGI methylation in promoter region and con-
sequent complete blockage of the MGMT gene expres-
sion were shown in other studies by using a luciferase
reporter system [38], an analysis of accessibility of rest-
riction enzymes to the MGMT promoter [41, 42] a. o.
All of them are consistent with a model of methylation-
related silencing of gene expression, which involves
102
IATSYSHYNA A. P.
binding of methyl-CpG binding protein to methylated
DNA, recruitment by this protein of histone deacetyla-
se complexes, and as consequence histone deacetylation
and chromatin condensation [38].
It has been shown by using ChIP assay that a higher
level of acetylation of histones H3 and H4 bound to the
promoter region was associated with the MGMT gene
expression, while transcriptional inactivation of the gene
was caused by formation of condensed chromatin after
binding of a greater amount of methyl-CpG binding
domain containing proteins (such as MeCP2, MBD1,
and CAF-1) to the methylated promoter and histone de-
acetylation [39].
It has been revealed that associated with open chro-
matin and active transcription acetylated H3K and H4K,
as well as methylated H3K4, were localized outside of
the unmethylated CGI whithin minimal promoter in the
MGMT-expressing cells, whilst closed chromatin was
associated with methylated CGI and hypermethylated
lysine 9 in histone H3 (H3K9) throughout this island
[43, 44]. This observation is consistent with a model for
the aberrant silencing of the human MGMT gene, in ac-
cordance with which the open chromatin structure of
CGI in MGMT-expressing cells consists of an approxi-
mately 250-bp nucleosome-free, TF binding and nuc-
lease-accessible region of DNA, and is formed by at least
four flanking precisely positioned nucleosome-like struc-
tures [42]. Such positioning of nucleosomes is lost and
random in MGMT non-expressing cells causing the clo-
sed chromatin structure [42]. Thus, in MGMT non-ex-
pressing cells the closed chromatin structure is associa-
ted with methylated CGI and hypermethylated H3K9
throughout this island [43]. Dimethylation of H3K9
and binding of methyl-CpG binding protein have been
shown to be common and essential for MGMT silencing
in cases with hypomethylated promoter region [44].
An example of open chromatin state is shown in
Fig. 3 (see inset). Histone modification tracks from
ENCODE project [10] display signals for markers of ac-
tive promoter, such as H3K4me3, H3K9ac, and H3K27ac
in MGMT-expressing HepG2 cells, whereas there is
no signal for markers of silenced chromatin regions
(H3K9me3 and H3K27me3).
A causality between the MGMT promoter methyla-
tion and its transcriptional silencing was demonstrated
also in cultured cells [26, 45, 46]. It was shown that
logarithmically growing normal human fibroblasts dis-
played approximately 15 % of CpG dinucleotide methy-
lation in CGI of the MGMT promoter, compared with
approximately 50 % of CGI methylation in confluent
growth-arrested cells [45]. The MGMT promoter me-
thylation was shown to be not permanent and reversed
at logarithmic growth of cells [45]. Progressive increa-
sing of the CGI methylation of the MGMT promoter
region was demonstrate with increasing of cell culture
passage number, so established immortalized cell lines
often completely lack of the gene expression [26, 46].
These findings probably could explain our and other
researchers observations of fluctuations of MGMT le-
vels at different stages of in vitro cultivation and estab-
lishment of cell lines [9].
RNA i n t e r f e r e n c e is evolutionarily conserved
and widespread mechanism regulation of gene expres-
sion by small noncoding RNAs [47, 48]. MicroRNAs
(miRNAs) have been identified as one of the most wide-
spread class of endogenous small RNAs in mammalian
cells [48]. Sites for many miRNA from different fami-
lies are predicted in the 3'UTR of MGMT transcript
NM_002412 by using TargetScanHuman 5.1 on its web-
page [47], as well as in the UCSC Genome Browser
(Table). To date there is no evidence about regulation
of the human MGMT gene expression in vivo via RNA
interference mechanism, but silencing of the MGMT
protein biosynthesis via RNA interference belongs to
the strategies to increase the sensitivity of cancer cells
to alkylating drugs. Small double-stranded RNA mole-
cules can be introduced exogenously as short interfe-
ring RNAs [14]. The clinical use of such strategy is sug-
gested, but it is prevented by significant problems,
103
MGMT EXPRESSION: INSIGHTS INTO ITS REGULATION. 1. EPIGENETIC FACTORS
miRNA Position in 3'UTR Seed match
hsa-miR-1197 96–102 7mer-m8
hsa-miR-4436a 97–103 7mer-m8
hsa-miR-3607-3p 138–144 7mer-m8
hsa-miR-4718 140–146 7mer-1A
hsa-miR-4539 152–159 8mer
hsa-miR-3121-3p 209–215 7mer-m8
hsa-miR-3911 362–368 7mer-m8
Conserved sites for miRNA predicted in the 3'UTR of the human
MGMT transcript
among which are incomplete silencing of a target gene
and so-called off-target effects, non-specific immune
responses, and a major challenge – in vivo delivery.
A l t e r n a t i v e s p l i c i n g of genes is an im-
portant mechanism of the post-transcriptional regulation
of gene expression in metazoan, generating different
transcripts from a single pre-mRNA [49]. The alterna-
tive MGMT transcripts were predicted by Swiss Insti-
tute of Bioinformatics (NC_000010_1953). The UCSC
alternative splicing track is constructed by analyzing ex-
perimental RNA transcripts (Fig. 4), but no one
alternatively spliced isoform was transcribed from the
MGMT gene [50] according to the Alternative Splicing
Annotation Project [51]. Thus, the expression of alter-
native MGMT transcripts must be shown in experiments
of transcriptome profiling by using not only hybridiza-
tion-based microarrays, but next generation sequencing
based approach, RNA-seq, and so on [52].
Post-translational modifications of the MGMT pro-
tein and their influence upon the enzyme fate are exten-
sively reviewed and discussed in [50].
Conclusions. The DNA repair enzyme MGMT be-
longs to the direct reversal repair system, i. e. removes
alkyl groups from the O6-position guanine without DNA
lesion by mechanism of so-called «suicidal» reaction,
and the capacity of cells to repair O6-alkylguanine de-
pends on the level of MGMT in cell or the rate at which
a cell can synthesize it. However, MGMT not only pre-
vents mutations and cell death, but the enzyme can pro-
vide resistance of cancer cells to alkylating chemothera-
py. The high intra- and inter-individual variations in
the human MGMT expression level have been observed
indicating a complicated regulation of this gene. In this
study the epigenetic factors, which could be potentially
involved in regulation of the MGMT expression, have
been reviewed. Among them are DNA methylation of
promoter region and gene body, chromatin remodeling
via histone modifications, RNA interference, alternative
splicing, and protein post-translational modifications.
It has been shown that methylation of the MGMT pro-
moter is often associated with the loss of its expression
in tumor cells, whilst methylation of the gene body cor-
relates with an increased expression. The data on methy-
lation of the MGMT promoter and gene body in many
different cell lines from ENCODE are consistent with
the obtained data, providing additional indirect evidence
of a control function of these epigenetic factors in the
MGMT transcription. Histone modification markers of
open chromatin structure have been also revealed within
promoter region of different MGMT-expressing cells.
This promoter region spans the CGI and DHS, contains
TSS and binding sites for several TFs. Also, histone
markers of closed chromatin have been revealed within
methylated promoter in cells not expressing this alkyl-
transferase. Whereas predicted within 3'UTR of MGMT
sites for many miRNA, as well alternative transcripts
have no experimental evidence and are needed to be
analyzed.
Acknowledgement. The study was supported by
grant for Young Scientists from the National Academy
of Sciences of Ukraine (0111U008220).
А. П. Яци ши на
Експресія гена MGMT: ро зуміння її ре гу ляції.
1. Епіге не тичні фак то ри
Ре зю ме
О6-ме тил гу анін-ДНК ме тил тран сфе ра за (MGMT) – це ре па ра тив-
ний фер мент, який ви да ляє алкільні адук ти з О6-гуаніну в ДНК.
Нез ва жа ю чи на те, що MGMT за побігає появі му тацій і клітин-
104
IATSYSHYNA A. P.
A
B
Fig. 4. Graphs of predicted alternative splicing transcripts from Swiss Institute of Bioinformatics [10]. (NC_000010_1953, chr10:131265453-
131566301): A – plot of the alt-splicing drawn to scale; B – plot of alt-splicing drawn with exons enlarged. The graphs of predicted alternative
splicing transcripts are constructed by analyzing experimental RNA transcripts. The black blocks represent exons; lines indicate introns
ній смерті, він та кож за без пе чує стійкість ра ко вих клітин до
алкілу валь них спо лук за хіміот е рапії. Спос теріга ють значні внут-
рішньо- та міжіндивіду аль ну ко ли ван ня у рівнях експресії MGMT,
що вка зує на склад ну сис те му ре гу ляції да но го гена. Пред став ле -
ний огляд при свя че ний вив ченню епіге не тич них фак торів, які мо -
жуть бути по тенційно за лу чені до ре гу ляції експресії гена MGMT
лю ди ни. До них на ле жать ре мо де лю ван ня хро ма ти ну за раху нок
мо дифікацій гістонів і ме ти лю ван ня ДНК про мо тор ної ділянки та
тіла гена, а та кож РНК-ре гу ля торні ме ханізми, аль тер на тив -
ний сплай синг, по сттран сляційні мо дифікації білка тощо.
Клю чові сло ва: О6-ме тил гу анін-ДНК-ме тил тран сфе ра за
(MGMT), епіге не тич на ре гу ляція експресії гена, ме ти лю ван ня,
ре мо де лю ван ня хро ма ти ну.
А. П. Яцы ши на
Экспрес сия гена MGMT: по ни ма ние ее ре гу ля ции.
1. Эпи ге не ти чес кие фак то ры
Ре зю ме
О6-ме тил гу а нин-ДНК ме тил тран сфе ра за (MGMT) – это фер-
мент ре па ра ции ДНК, от ве тствен ный за уда ле ние ал киль ных ад -
дук тов из О6-гу а ни на в ДНК. Нес мот ря на то, что MGMT предо-
хра ня ет от по яв ле ния му та ций и кле точ ной ги бе ли, этот фер-
мент мо жет так же об ес пе чи вать устой чи вость ра ко вых кле -
ток к ал ки ли ру ю щим со е ди не ни ям при хи ми о те ра пии. Обна ру же -
ны вы со кие внут ри- и меж инд и ви ду аль ные ва ри а ции в уров нях
экс прес сии MGMT, что ука зы ва ет на слож ную сис те му ре гу ля -
ции это го гена. Дан ный об зор по свя щен из уче нию эпи ге не ти че-
ских фак то ров, ко то рые по тен ци аль но мо гут учас тво вать в ре -
гу ля ции экс прес сии гена MGMT че ло ве ка. Сре ди них ре мо де ли ро -
ва ние хро ма ти на с по мощью мо ди фи ка ции гис то нов и ме ти лиро-
ва ния ДНК про мо тор но го учас тка и тела гена, а так же РНК-ре-
гуля тор ные ме ханизмы, аль тер на тив ный сплай синг, по сттранс-
ляци он ные мо ди фи ка ии бел ка и др.
Клю че вые сло ва: О6-ме тил гу а нин-ДНК ме тил тран сфе ра за
(MGMT), эпи ге не ти чес кая ре гу ля ция експрес сии гена, ме ти ли -
ро ва ние, ре мо де ли ро ва ние хро ма ти на.
REFERENCES
1. Pegg A. E., Dolan M. E., Moschel R. C. Structure, function, and
inhibition of O6-alkylguanine-DNA alkyltransferase // Prog.
Nucleic Acid Res. Mol. Biol.–1995.–51.–P. 167–223.
2. Kaina B., Christmann M., Naumann S., Roos W. P. MGMT: key
node in the battle against genotoxicity, carcinogenicity and apop-
tosis induced by alkylating agents // DNA Repair (Amst).–2007.–
6, N 8.–P. 1079–1099.
3. Verbeek B., Southgate T. D., Gilham D. E., Margison G. P. O6-Me-
thylguanine-DNA methyltransferase inactivation and chemothe-
rapy // Br. Med. Bull.–2008.–85.–P. 17–33.
4. Hegi M. E., Liu L., Herman J. G., Stupp R., Wick W., Weller M.,
Mehta M. P., Gilbert M. R. Correlation of O6-methylguanine me-
thyltransferase (MGMT) promoter methylation with clinical out-
comes in glioblastoma and clinical strategies to modulate MGMT
activity // J. Clin. Oncol.–2008.–26, N 25.–P. 4189–4199.
5. Margison G. P., Povey A. C., Kaina B., Santibanez-Koref M. F.
Variability and regulation of O6-alkylguanine-DNA alkyltrans-
ferase // Carcinogenesis.–2003.–24, N 4.–P. 625–635.
6. Sagher D., Karrison T., Schwartz J. L., Larson R. A., Strauss B.
Heterogeneity of O6-alkylguanine-DNA alkyltransferase activi-
ty in peripheral blood lymphocytes: relationship between this ac-
tivity in lymphocytes and in lymphoblastoid lines from normal
controls and from patients with Hodgkin's disease or non-Hodg-
kin’s lymphoma // Cancer Res.–1989.–49, N 19.–P. 5339–5344.
7. Arita I., Fujimori A., Takebe H., Tatsumi K. Evidence for sponta-
neous conversion of Mex– to Mex+ in human lymphoblastoid cells
// Carcinogenesis.–1990.–11, N 10.–P. 1733–1738.
8. Strauss B. S. The control of O6-methylguanine-DNA methyl-
transferase (MGMT) activity in mammalian cells: a pre-molecu-
lar view // Mutat. Res.–1990.–233, N 1–2.–P. 139–150.
9. Iatsyshyna A. P., Lylo V. V., Pidpala O. V., Ruban T. P., Vagina
I. M., Lukash L .L. The expression of O6-methylguanine-DNA
methyltransferase in the spontaneously immortalized mouse cell
line G1 and its sublines G1-OA and G1-T // Biopolym. Cell.–
2007.–23, N 3.–P. 250–254.
10. Meyer L. R., Zweig A. S., Hinrichs A. S., Karolchik D., Kuhn R.
M., Wong M., Sloan C. A., Rosenbloom K. R., Roe G., Rhead B.,
Raney B. J., Pohl A., Malladi V. S., Li C. H., Lee B. T., Learned
K., Kirkup V., Hsu F., Heitner S., Harte R. A., Haeussler M., Gu-
ruvadoo L., Goldman M., Giardine B. M., Fujita P. A., Dreszer T.
R., Diekhans M., Cline M. S., Clawson H., Barber G. P., Hauss-
ler D., Kent W. J. The UCSC Genome Browser database: exten-
sions and updates 2013 // Nucleic Acids Res.–2013.–41, Data-
base issue.–D64–69.
11. Kent W. J., Sugnet C. W., Furey T. S., Roskin K. M., Pringle T.
H., Zahler A. M., Haussler D. The human genome browser at
UCSC // Genome Res.–2002.–12, N 6.–P. 996–1006.
12. Pegg A. E. Methylation of the O6 position of guanine in DNA is
the most likely initiating event in carcinogenesis by methylating
agents // Cancer Invest.–1984.–2, N 3.–P. 223–231.
13. Singer B. Alkylation of the O6 of guanine is only one of many
chemical events that may initiate carcinogenesis // Cancer Invest.–
1984.–2, N 3.–P. 233–238.
14. Iatsyshyna A. Current approaches to improve the anticancer che-
motherapy with alkylating agents: state of the problem in world
and Ukraine // Biopolym. Cell.–2012.–28, N 2.–P. 83–92.
15. Tubbs J. L., Pegg A. E., Tainer J. A. DNA binding, nucleotide flip-
ping, and the helix-turn-helix motif in base repair by O6-alkyl-
guanine-DNA alkyltransferase and its implications for cancer che-
motherapy // DNA Repair (Amst).–2007.–6, N 8.–P. 1100–1115.
16. Pegg A. E., Dolan M. E., Scicchitano D., Morimoto K. Studies of
the repair of O6-alkylguanine and O4-alkylthymine in DNA by
alkyltransferases from mammalian cells and bacteria // Environ.
Health Perspect.–1985.–62.–P. 109–114.
17. Janssen K., Eichhorn-Grombacher U., Schlink K., Nitzsche S.,
Oesch F., Kaina B. Long-time expression of DNA repair enzy-
mes MGMT and APE in human peripheral blood mononuclear
cells // Arch. Toxicol.–2001.–75, N 5.–P. 306–312.
18. Gerson S. L., Trey J. E., Miller K., Berger N. A. Comparison of
O6-alkylguanine-DNA alkyltransferase activity based on cellular
DNA content in human, rat and mouse tissues // Carcinogenesis.–
1986.–7, N 5.–P. 745–749.
19. Lenhard B., Sandelin A., Carninci P. Metazoan promoters: emer-
ging characteristics and insights into transcriptional regulation //
Nat. Rev. Genet.–2012.–13, N 4.–P. 233–245.
20. Deaton A. M., Bird A. CpG islands and the regulation of trans-
cription // Genes Dev.–2011.–25, N 10.–P. 1010–1022.
21. Harris L. C., Potter P. M., Tano K., Shiota S., Mitra S., Brent T.
P. Characterization of the promoter region of the human O6-me-
thylguanine-DNA methyltransferase gene // Nucleic Acids Res.–
1991.–19, N 22.–P. 6163–6167.
22. Maurano M. T., Humbert R., Rynes E., Thurman R. E., Haugen
E., Wang H., Reynolds A. P., Sandstrom R., Qu H., Brody J., Sha-
fer A., Neri F., Lee K., Kutyavin T., Stehling-Sun S., Johnson A.
K., Canfield T. K., Giste E., Diegel M., Bates D., Hansen R. S.,
105
MGMT EXPRESSION: INSIGHTS INTO ITS REGULATION. 1. EPIGENETIC FACTORS
Neph S., Sabo P. J., Heimfeld S., Raubitschek A., Ziegler S., Cot-
sapas C., Sotoodehnia N., Glass I., Sunyaev S. R., Kaul R., Sta-
matoyannopoulos J. A. Systematic localization of common di-
sease-associated variation in regulatory DNA // Science.–2012.–
337, N 6099.–P. 1190–1195.
23. Qian X., von Wronski M. A., Brent T. P. Localization of methyla-
tion sites in the human O6-methylguanine-DNA methyltransfe-
rase promoter: correlation with gene suppression // Carcinogene-
sis.–1995.–16, N 6.–P. 1385–1390.
24. Esteller M., Hamilton S. R., Burger P. C., Baylin S. B., Herman
J. G. Inactivation of the DNA repair gene O6-methylguanine-
DNA methyltransferase by promoter hypermethylation is a com-
mon event in primary human neoplasia // Cancer Res.–1999.–
59, N 4.–P. 793–797.
25. Herath N. I., Walsh M. D., Kew M., Smith J. L., Jass J. R., Young J.,
Leggett B. A., Macdonald G. A. Silencing of O6-methylguanine
DNA methyltransferase in the absence of promoter hypermethy-
lation in hepatocellular carcinomas from Australia and South
Africa // Oncol. Rep.–2007.–17, N 4.–P. 817–822.
26. Danam R. P., Howell S. R., Remack J. S., Brent T. P. Heteroge-
neous methylation of the O(6)-methylguanine-DNA methyl-
transferase promoter in immortalized IMR90 cell lines // Int. J.
Oncol.–2001.–18, N 6.–P. 1187–1193.
27. Esteller M., Garcia-Foncillas J., Andion E., Goodman S. N., Hi-
dalgo O. F., Vanaclocha V., Baylin S. B., Herman J. G. Inactiva-
tion of the DNA-repair gene MGMT and the clinical response of
gliomas to alkylating agents // N. Engl. J. Med.–2000.–343,
N 19.–P. 1350–1354.
28. Esteller M., Gaidano G., Goodman S. N., Zagonel V., Capello D.,
Botto B., Rossi D., Gloghini A., Vitolo U., Carbone A., Baylin S.
B., Herman J. G. Hypermethylation of the DNA repair gene
O(6)-methylguanine DNA methyltransferase and survival of pa-
tients with diffuse large B-cell lymphoma // J. Natl Cancer Inst.–
2002.–94, N 1.–P. 26–32.
29. Soejima H., Zhao W., Mukai T. Epigenetic silencing of the MGMT
gene in cancer // Biochem. Cell Biol.–2005.–83, N 4.–P. 429–437.
30. Maier S., Dahlstroem C., Haefliger C., Plum A., Piepenbrock C.
Identifying DNA methylation biomarkers of cancer drug respon-
se // Am. J. Pharmacogenomics.–2005.–5, N 4.–P. 223–232.
31. Esteller M., Herman J. G. Generating mutations but providing
chemosensitivity: the role of O6-methylguanine DNA methyl-
transferase in human cancer // Oncogene.–2004.–23, N 1.–P. 1–8.
32. Park T. J., Han S. U., Cho Y. K., Paik W. K., Kim Y. B., Lim I. K.
Methylation of O(6)-methylguanine-DNA methyltransferase
gene is associated significantly with K-ras mutation, lymph node
invasion, tumor staging, and disease free survival in patients
with gastric carcinoma // Cancer.–2001.–92, N 11.–P. 2760–2768.
33. Wang Y., Kato T., Ayaki H., Ishizaki K., Tano K., Mitra S., Ike-
naga M. Correlation between DNA methylation and expression
of O6-methylguanine-DNA methyltransferase gene in cultured
human tumor cells // Mutat. Res.–1992.–273, N 2.–P. 221–230.
34. Harris L. C., Remack J. S., Houghton P. J., Brent T. P. Wild-type
p53 suppresses transcription of the human O6-methylguanine-
DNA methyltransferase gene // Cancer Res.–1996.–56, N 9.–
P. 2029–2032.
35. Pieper R. O., Costello J. F., Kroes R. A., Futscher B. W., Marathi
U., Erickson L. C. Direct correlation between methylation status
and expression of the human O-6-methylguanine DNA methyl-
transferase gene // Cancer Commun.–1991.–3, N 8.–P. 241–253.
36. Christmann M., Pick M., Lage H., Schadendorf D., Kaina B. Ac-
quired resistance of melanoma cells to the antineoplastic agent
fotemustine is caused by reactivation of the DNA repair gene
MGMT // Int. J. Cancer.–2001.–92, N 1.–P. 123–129.
37. Jones P. A. Functions of DNA methylation: islands, start sites,
gene bodies and beyond // Nat. Rev. Genet.–2012.–13, N 7.–
P. 484–492.
38. Bhakat K. K., Mitra S. CpG methylation-dependent repression of
the human O6-methylguanine-DNA methyltransferase gene linked
to chromatin structure alteration // Carcinogenesis.–2003.–24,
N 8.–P. 1337–1345.
39. Danam R. P., Howell S. R., Brent T. P., Harris L. C. Epigenetic
regulation of O6-methylguanine-DNA methyltransferase gene
expression by histone acetylation and methyl-CpG binding pro-
teins // Mol. Cancer Ther.–2005.–4, N 1.–P. 61–69.
40. Pieper R. O., Patel S., Ting S. A., Futscher B. W., Costello J. F.
Methylation of CpG island transcription factor binding sites is
unnecessary for aberrant silencing of the human MGMT gene //
J. Biol. Chem.–1996.–271, N 23.–P. 13916–13924.
41. Costello J. F., Futscher B. W., Kroes R. A., Pieper R. O. Methyla-
tion-related chromatin structure is associated with exclusion of
transcription factors from and suppressed expression of the O-6-
methylguanine DNA methyltransferase gene in human glioma
cell lines // Mol. Cell Biol.–1994.–14, N 10.–P. 6515–6521.
42. Patel S. A., Graunke D. M., Pieper R. O. Aberrant silencing of
the CpG island-containing human O6-methylguanine DNA me-
thyltransferase gene is associated with the loss of nucleosome-li-
ke positioning // Mol. Cell Biol.–1997.–17, N 10.–P. 5813–5822.
43. Nakagawachi T., Soejima H., Urano T., Zhao W., Higashimoto
K., Satoh Y., Matsukura S., Kudo S., Kitajima Y., Harada H., Fu-
rukawa K., Matsuzaki H., Emi M., Nakabeppu Y., Miyazaki K.,
Sekiguchi M., Mukai T. Silencing effect of CpG island hyperme-
thylation and histone modifications on O6-methylguanine-DNA
methyltransferase (MGMT) gene expression in human cancer //
Oncogene.–2003.–22, N 55.–P. 8835–8844.
44. Zhao W., Soejima H., Higashimoto K., Nakagawachi T., Urano
T., Kudo S., Matsukura S., Matsuo S., Joh K., Mukai T. The es-
sential role of histone H3 Lys9 di-methylation and MeCP2 bin-
ding in MGMT silencing with poor DNA methylation of the pro-
moter CpG island // J. Biochem.–2005.–137, N 3.–P. 431–440.
45. Pieper R. O., Lester K. A., Fanton C. P. Confluence-induced al-
terations in CpG island methylation in cultured normal human
fibroblasts // Nucleic Acids Res.–1999.–27, N 15.–P. 3229–3235.
46. Yamada H., Vijayachandra K., Penner C., Glick A. Increased
sensitivity of transforming growth factor (TGF) beta 1 null cells
to alkylating agents reveals a novel link between TGFbeta signa-
ling and O(6)-methylguanine methyltransferase promoter hyper-
methylation // J. Biol. Chem.–2001.–276, N 22.–P. 19052–19058.
47. Friedman R. C., Farh K. K., Burge C. B., Bartel D. P. Most mam-
malian mRNAs are conserved targets of microRNAs // Genome
Res.–2009.–19, N 1.–P. 92–105.
48. Li Z., Rana T. M. Molecular mechanisms of RNA-triggered ge-
ne silencing machineries // Acc. Chem. Res.–2012.–45, N 7.–
P. 1122–1131.
49. Singh R. K., Cooper T. A. Pre-mRNA splicing in disease and the-
rapeutics // Trends Mol. Med.–2012.–18, N 8.–P. 472–482.
50. Iatsyshyna A. P., Nidoieva Z. M., Pidpala O. V., Lukash L. L. Bio-
informatic analysis of potential post-translational modification
sites of the human O6-methylg uanine-DNA methylt ransferase
(MGMT) protein // Ukr. Biokhim. Zh.–2012.–84, N 6.–P. 74–85.
51. Lee C., Atanelov L., Modrek B., Xing Y. ASAP: the Alternative
Splicing Annotation Project // Nucleic Acids Res.–2003.–31,
N 1.–P. 101–105.
52. Sanchez-Pla A., Reverter F., Ruiz de Villa M. C., Comabella M.
Transcriptomics: mRNA and alternative splicing // J. Neuroim-
munol.–2012.–248, N 1–2.–P. 23–31.
Received 30.12.12
106
IATSYSHYNA A. P.
|