Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs

Aim. Production and purification of the recombinant histidine-tagged Y-box- binding protein and study of its interaction with DNA and poly(ADP-ribose). Methods. Ligation-independent cloning, PCR, Sanger sequencing, protein chromatography, polyacrylamide gel electrophoresis, and electrophoresis mobil...

Full description

Saved in:
Bibliographic Details
Published in:Вiopolymers and Cell
Date:2017
Main Authors: Alemasova, E.E., Naumenko, K.N., Pestryakov, P.E., Lavrik, O.I.
Format: Article
Language:English
Published: Інститут молекулярної біології і генетики НАН України 2017
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/152976
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs / E.E. Alemasova, K.N. Naumenko, P.E. Pestryakov, O.I. Lavrik // Вiopolymers and Cell. — 2017. — Т. 33, № 3. — С. 214-220. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-152976
record_format dspace
spelling Alemasova, E.E.
Naumenko, K.N.
Pestryakov, P.E.
Lavrik, O.I.
2019-06-13T11:55:43Z
2019-06-13T11:55:43Z
2017
Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs / E.E. Alemasova, K.N. Naumenko, P.E. Pestryakov, O.I. Lavrik // Вiopolymers and Cell. — 2017. — Т. 33, № 3. — С. 214-220. — Бібліогр.: 8 назв. — англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.000954
https://nasplib.isofts.kiev.ua/handle/123456789/152976
577.112.083
Aim. Production and purification of the recombinant histidine-tagged Y-box- binding protein and study of its interaction with DNA and poly(ADP-ribose). Methods. Ligation-independent cloning, PCR, Sanger sequencing, protein chromatography, polyacrylamide gel electrophoresis, and electrophoresis mobility shift assay. Results. cDNA coding for the YB-1 protein has a previously undocumented two single nucleotide polymorphisms. The expression construct for production of the his-tagged YB-1 protein was designed to simplify the purification procedure and an appropriate protocol for protein purification was developed. Using electrophoresis mobility shift assay, we have shown that poly(ADP-ribose) competes with a double- and single-stranded DNA and RNA for binding to purified recombinant his-tagged YB-1. Conclusions. In the present work we developed and optimized the procedure of the recombinant YB-1 protein production and purification from bacterial cells. We found that poly(ADP-ribose) at high concentration is able to recruit YB-1 protein from the YB-1-DNA and YB-1-RNA complexes, suggesting a possible YB-1 involvement in DNA repair.
Мета. Отримання рекомбінантного гістидин-міченого Y-бокс-зв’язуючий білрк 1 і дослідження його взаємодії з ДНК, РНК та полі (АДФ-рибозою). Методи. Безлігазне клонування, ПЛР, секвенування по Сенгеру, хроматогра-фія, електрофорез в поліакриламідному гелі та метод затримки в гелі. Результати. кДНК YB-1 містить дві раніше недокументовані поодинокі нуклеотидні заміни. Сконструйовано вектор для експресії гистидин-міченого білка YB-1 і розроблена відповідна методика очищення білка. Методом затримки в гелі показано, що полі (АДФ-рибоза) конкурує з одно- і дволанцюговою ДНК, а також РНК, за зв›язування ре-комбінантного гістидин-міченого білка YB-1. Висновки. У цій роботі ми розробили та оптимізували процедуру отримання рекомбінантного білка YB-1 з бактеріальних клітин. Ми встановили, що полі (АДФ-рибоза) у високій концентрації здатна витісняти білок YB-1 з його комплексів з ДНК і РНК, що вказує на можливість участі YB-1 в репарації ДНК.
Цель. Получение рекомбинантного гистидин-меченого Y-бокс-связывающего белка 1 и исследование его взаимо-действий с ДНК, РНК и поли(АДФ-рибозой). Методы. Безлигазное клонирование, ПЦР, секвенирование по Сэнге-ру, хроматография, электрофорез в полиакриламидном геле и метод задержки в геле. Результаты. кДНК YB-1 со-держит две ранее недокументированные одиночные нуклеотидные замены. Сконструирован вектор для экспрес-сии гистидин-меченого белка YB-1 и разработана соответствующая методика очистки белка. Методом задержки в геле показано, что поли(АДФ-рибоза) конкурирует с одно- и двухцепочечными ДНК, а также РНК, за связывание рекомбинантного гистидин-меченого белка YB-1. Выводы. В настоящей работе мы разработали и оптимизировали процедуру получения рекомбинантного белка YB-1 из бактериальных клеток. Мы установили, что поли(АДФ-рибоза) в высокой концентрации способна вытеснять белок YB-1 из его комплексов с ДНК и РНК, что указывает на возможность участия YB-1 в репарации ДНК.
This work was supported by RFBR grant 16-54-76010; GDRI program; Russian Ministry of Science and Education under 5-100 Excellence Program; Russian State funded budget project (VI.57.1.2, 0309-2016-0001); and educational fellowship from President of Russian Federation to young scientists and PhD students to AEE.
en
Інститут молекулярної біології і генетики НАН України
Вiopolymers and Cell
Molecular and Cell Biotechnologies
Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs
Отримання рекомбінантного аналога Y-бокс-зв’язуючого білка 1 і його взаємодію з полі (АДФ-рибозою), РНК, одно- і дволанцюговою ДНК
Получение рекомбинантного аналога Y-бокс-связывающего белка 1 и его взаимодействие с поли(АДФ-рибозой), РНК, одно- и двухцепочечной ДНК
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs
spellingShingle Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs
Alemasova, E.E.
Naumenko, K.N.
Pestryakov, P.E.
Lavrik, O.I.
Molecular and Cell Biotechnologies
title_short Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs
title_full Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs
title_fullStr Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs
title_full_unstemmed Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs
title_sort production, purification of the recombinant analog of y-box-binding protein and its interaction with poly(adp-ribose), rna, single- and double-stranded dnas
author Alemasova, E.E.
Naumenko, K.N.
Pestryakov, P.E.
Lavrik, O.I.
author_facet Alemasova, E.E.
Naumenko, K.N.
Pestryakov, P.E.
Lavrik, O.I.
topic Molecular and Cell Biotechnologies
topic_facet Molecular and Cell Biotechnologies
publishDate 2017
language English
container_title Вiopolymers and Cell
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Отримання рекомбінантного аналога Y-бокс-зв’язуючого білка 1 і його взаємодію з полі (АДФ-рибозою), РНК, одно- і дволанцюговою ДНК
Получение рекомбинантного аналога Y-бокс-связывающего белка 1 и его взаимодействие с поли(АДФ-рибозой), РНК, одно- и двухцепочечной ДНК
description Aim. Production and purification of the recombinant histidine-tagged Y-box- binding protein and study of its interaction with DNA and poly(ADP-ribose). Methods. Ligation-independent cloning, PCR, Sanger sequencing, protein chromatography, polyacrylamide gel electrophoresis, and electrophoresis mobility shift assay. Results. cDNA coding for the YB-1 protein has a previously undocumented two single nucleotide polymorphisms. The expression construct for production of the his-tagged YB-1 protein was designed to simplify the purification procedure and an appropriate protocol for protein purification was developed. Using electrophoresis mobility shift assay, we have shown that poly(ADP-ribose) competes with a double- and single-stranded DNA and RNA for binding to purified recombinant his-tagged YB-1. Conclusions. In the present work we developed and optimized the procedure of the recombinant YB-1 protein production and purification from bacterial cells. We found that poly(ADP-ribose) at high concentration is able to recruit YB-1 protein from the YB-1-DNA and YB-1-RNA complexes, suggesting a possible YB-1 involvement in DNA repair. Мета. Отримання рекомбінантного гістидин-міченого Y-бокс-зв’язуючий білрк 1 і дослідження його взаємодії з ДНК, РНК та полі (АДФ-рибозою). Методи. Безлігазне клонування, ПЛР, секвенування по Сенгеру, хроматогра-фія, електрофорез в поліакриламідному гелі та метод затримки в гелі. Результати. кДНК YB-1 містить дві раніше недокументовані поодинокі нуклеотидні заміни. Сконструйовано вектор для експресії гистидин-міченого білка YB-1 і розроблена відповідна методика очищення білка. Методом затримки в гелі показано, що полі (АДФ-рибоза) конкурує з одно- і дволанцюговою ДНК, а також РНК, за зв›язування ре-комбінантного гістидин-міченого білка YB-1. Висновки. У цій роботі ми розробили та оптимізували процедуру отримання рекомбінантного білка YB-1 з бактеріальних клітин. Ми встановили, що полі (АДФ-рибоза) у високій концентрації здатна витісняти білок YB-1 з його комплексів з ДНК і РНК, що вказує на можливість участі YB-1 в репарації ДНК. Цель. Получение рекомбинантного гистидин-меченого Y-бокс-связывающего белка 1 и исследование его взаимо-действий с ДНК, РНК и поли(АДФ-рибозой). Методы. Безлигазное клонирование, ПЦР, секвенирование по Сэнге-ру, хроматография, электрофорез в полиакриламидном геле и метод задержки в геле. Результаты. кДНК YB-1 со-держит две ранее недокументированные одиночные нуклеотидные замены. Сконструирован вектор для экспрес-сии гистидин-меченого белка YB-1 и разработана соответствующая методика очистки белка. Методом задержки в геле показано, что поли(АДФ-рибоза) конкурирует с одно- и двухцепочечными ДНК, а также РНК, за связывание рекомбинантного гистидин-меченого белка YB-1. Выводы. В настоящей работе мы разработали и оптимизировали процедуру получения рекомбинантного белка YB-1 из бактериальных клеток. Мы установили, что поли(АДФ-рибоза) в высокой концентрации способна вытеснять белок YB-1 из его комплексов с ДНК и РНК, что указывает на возможность участия YB-1 в репарации ДНК.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/152976
citation_txt Production, purification of the recombinant analog of Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs / E.E. Alemasova, K.N. Naumenko, P.E. Pestryakov, O.I. Lavrik // Вiopolymers and Cell. — 2017. — Т. 33, № 3. — С. 214-220. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT alemasovaee productionpurificationoftherecombinantanalogofyboxbindingproteinanditsinteractionwithpolyadpribosernasingleanddoublestrandeddnas
AT naumenkokn productionpurificationoftherecombinantanalogofyboxbindingproteinanditsinteractionwithpolyadpribosernasingleanddoublestrandeddnas
AT pestryakovpe productionpurificationoftherecombinantanalogofyboxbindingproteinanditsinteractionwithpolyadpribosernasingleanddoublestrandeddnas
AT lavrikoi productionpurificationoftherecombinantanalogofyboxbindingproteinanditsinteractionwithpolyadpribosernasingleanddoublestrandeddnas
AT alemasovaee otrimannârekombínantnogoanalogaybokszvâzuûčogobílka1íiogovzaêmodíûzpolíadfribozoûrnkodnoídvolancûgovoûdnk
AT naumenkokn otrimannârekombínantnogoanalogaybokszvâzuûčogobílka1íiogovzaêmodíûzpolíadfribozoûrnkodnoídvolancûgovoûdnk
AT pestryakovpe otrimannârekombínantnogoanalogaybokszvâzuûčogobílka1íiogovzaêmodíûzpolíadfribozoûrnkodnoídvolancûgovoûdnk
AT lavrikoi otrimannârekombínantnogoanalogaybokszvâzuûčogobílka1íiogovzaêmodíûzpolíadfribozoûrnkodnoídvolancûgovoûdnk
AT alemasovaee polučenierekombinantnogoanalogaybokssvâzyvaûŝegobelka1iegovzaimodeistviespoliadfribozoirnkodnoidvuhcepočečnoidnk
AT naumenkokn polučenierekombinantnogoanalogaybokssvâzyvaûŝegobelka1iegovzaimodeistviespoliadfribozoirnkodnoidvuhcepočečnoidnk
AT pestryakovpe polučenierekombinantnogoanalogaybokssvâzyvaûŝegobelka1iegovzaimodeistviespoliadfribozoirnkodnoidvuhcepočečnoidnk
AT lavrikoi polučenierekombinantnogoanalogaybokssvâzyvaûŝegobelka1iegovzaimodeistviespoliadfribozoirnkodnoidvuhcepočečnoidnk
first_indexed 2025-11-26T08:32:00Z
last_indexed 2025-11-26T08:32:00Z
_version_ 1850615770862583808
fulltext 214 E. E. Alemasova, K. N. Naumenko, P. E. Pestryakov © 2017 E. E. Alemasova et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio- polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited UDC 577.112.083 Production, purification of the recombinant analog of Y-box-binding protein 1 and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNAs E. E. Alemasova1, K. N. Naumenko1,2, P. E. Pestryakov1, O. I. Lavrik1,2 1 Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences 8, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090 2 Novosibirsk State University 2, Pirogova Str., Novosibirsk, Russian Federation, 630090 lisenok.istreb@gmail.com Aim. Production and purification of the recombinant histidine-tagged Y-box- binding protein 1 and study of its interaction with DNA, RNA and poly(ADP-ribose). Methods. Ligation- independent cloning, PCR, Sanger sequencing, protein chromatography, polyacrylamide gel electrophoresis, and electrophoresis mobility shift assay. Results. cDNA coding for the YB-1 protein has a previously undocumented two single nucleotide polymorphisms. The expression construct for production of the his-tagged YB-1 protein was designed to simplify the purifica- tion procedure and an appropriate protocol for protein purification was developed. Using electrophoresis mobility shift assay, we have shown that poly(ADP-ribose) competes with a double- and single-stranded DNA and RNA for binding to purified recombinant his-tagged YB-1. Conclusions. In the present work we developed and optimized the procedure of the recombinant YB-1 protein production and purification from bacterial cells. We found that poly(ADP-ribose) at high concentration is able to recruit YB-1 protein from the YB-1-DNA and YB-1-RNA complexes, suggesting a possible YB-1 involvement in DNA repair. K e y w o r d s: YB-1, protein purification, poly(ADP-ribose) (PAR), DNA repair. Introduction Y-box-binding protein 1 (YB-1) is a multifunc- tional cellular factor increasingly considered as a potential universal regulator of different DNA repair systems [1]. Recent findings of our laboratory demonstrated YB-1 interplay with PARP1, the key regulatory protein of base excision repair pathway [2]. PARP1 binding to damaged DNA results in its activation fol- lowed by synthesis of nucleic acid-like poly- mer called poly(ADP-ribose) (PAR) using NAD+ as a precursor. The functions of PAR in the regulation of DNA repair are amazingly numerous and include chromatin remodeling, recruitment of downstream repair enzymes and Molecular and Cell Biotechnologies ISSN 1993-6842 (on-line); ISSN 0233-7657 (print) Biopolymers and Cell. 2017. Vol. 33. N 3. P 214–220 doi: http://dx.doi.org/10.7124/bc.000954 215 Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNA modulation of interactions within the DNA repair complex [2]. PAR was also shown to effectively outcompete binding of histones to DNA [3] and proposed to assemble the non- canonical DNA repair proteins (usually RNA- binding [4]) at the damage site in a similar way [5]. However, it is not entirely clear if poly(ADP-ribose) may act as a preferable li- gand for YB-1 in the presence of DNA and RNA as the YB-1 targets. For further examination of YB-1 role in DNA repair it is necessary to provide sufficient amounts of the recombinant protein required for in vitro studies. The existing method of YB-1 purification is time-consuming since it includes three chromatographic and two di- alysis stages [6]. Using histidine-tagged YB-1 is more advantageous since purification of a tagged protein can be performed during single- step affinity chromatography. Moreover, ob- tained his-tagged YB-1 protein can be also used in pull-down assay for searching YB-1 protein partners in cell. Here we describe a producing strain for his-tagYB-1 expression in bacteria. Optimized purification procedure allowed us to obtain preparative quantities of the target protein. We also optimized the pro- tocol for preparation of poly(ADP-ribose) free from DNA cofactor used for the PARP1 activa- tion and perform electrophoresis mobility shift assay (EMSA) to show that YB-1 binding to DNA, RNA or PAR may be regulated by PAR/ DNA or PAR/RNA ratio. Methods Construction of pLATE-51-his-tagYB-1 expression vector The plasmid pET-3-1-YB-1 containing cDNA fragment of human YB-1 was a generous gift from Lev P. Ovchinnikov and Dmitry Kretov (Institute of Protein Research RAS, Moscow, Russian Federation). The plasmid was ampli- fied in E.coli XL1Blue and isolated according to standard protocol. The presence of YB-1 cDNA insert was confirmed by PCR (with pET-U/pET-R primers, Table 1). The presence of mutations in YB-1 cDNA was analyzed by Sanger sequencing. cDNA encoding YB-1 protein was cloned in pLATE-51 expression vector using aLICator LIC Cloning & Expression System (Thermo Scientific, USA). YB-1 cDNA was amplified by PCR with specific primers plate51-forward Table 1. Oligonucleotide sequences and designations pET-U 5’-AGCCAACTCAGCTTCCTTTC-3’ pET-R 5’-ATAGGGAGACCACAACGGTT-3’ Plate-51 Forward 5’-GGAGATGGGAAGTCATTACTCAGCCCCGCCCTG-3’ Plate-51 Reverse 5’-GGTGATGATGATGACAAGAGCAGCGAGGCCGA-3’ ssDNA 5’-CGGTATCCACCAGGTCUGAGACAACGATGAAGCCCAAGCCAGATGAAATGTAGTC-3’ dsDNA 5’-CGGTATCCACCAGGTCUGAGACAACGATGAAGCCCAAGCCAGATGAAATGTAGTC-3’ 3’-GCCATAGGTGGTCCAGACTCTGTTGCTACTTCGGGTTCGGTCTACTTTACATCAG-5’ RNA 5’-gggaga aaaaag aaagaa auguuc uucuuc uaagaa gaaaga aaagaa aaagaa aaaaga caaaga cacgaa ggaaga-3’ 216 E. E. Alemasova, K. N. Naumenko, P. E. Pestryakov et al. and plate51-reverse in GC-buffer (Biolabmix, Russian Federation) using pET3-I-YB-1 as a template, then purified by isopropanol preci pi- tation and annealed with linearized pLATE-51 vector. E. coli DH5alpha competent cells were transformed by electroporation with resulting plasmid. The presence of pLATE51-YB-1 in transformant colonies, grown on medium con- taining ampicillin as selective antibiotic, was analyzed by colony PCR with specific primers plate51-forward and plate51-reverse. Purification of the recombinant his- tagYB-1 protein Expression of open reading frame encoding the his-tagYB-1 protein in E.coli BL21(DE3) was performed in the auto-induction system described by Studier [7]. The biomass (~16 g) was lysed by lysozyme treatment, sonicated and centrifuged to pellet cell debris. As the initial purification step we used metal affinity chromatography on a Ni-NTA resin. The co- lumn was equilibrated by Ni-A buffer (see Table 2 for details), then the supernatant was adjusted and washed with 10 column volumes (CV) of Ni-A buffer. Protein elution from the column was performed by step gradient of imidazole from 20 mM (0 % Ni-B buffer) to 250 mM (50 % Ni-B). For additional purifica- tion we used ion exchange chromatography. After Mono S column (GE Healthcare, UK) equilibration by 25 % Ion-B buffer, the sample was diluted in Ion-A (to 0.5 M NaCl), ad- justed, washed by 25 % Ion-B and eluted by linear gradient of KCl from 0.5 M (25 % Ion-B) to 2 M (100 % Ion-B). Gel filtration was employed as a final ‘polishing’ step. In this regard, the sample was concentrated by repeated chromatography on Mono S column using step gradient of KCl from 0.5 M (25 % Ion-B) to 1.5 M (75 % Ion-B), adjusted on 16/600 Superdex 75 per grade column (GE Healthcare) equilibrated by GF-buffer and isocratically eluted. The resulting sample was concentrated by Vivaspin Turbo 15 (Sartorius, Germany) in Storage buffer (Table 2). PAR labeling in vitro Radioactively labelled (or unlabeled) PAR polymer was obtained as described previ- Table 2. Purification details Purification step Column Buffers 1. Metal affinity chromatography Econo-Column (BioRad), L × I.D. 5 cm × 10 mm + GE HealthCare Ni-NTA resin Ni-A: 20 mM Tris-HCl pH 8.0, 1.5 M NaCl, 20 mM imidazole, 10 % glycerol, 0,1 % NP-40 Ni-B: 20 mM Tris-HCl pH 8.0, 1.5 M NaCl, 500 mM imidazole, 10 % glycerol, 0,1 % NP-40 2. Ion exchange chromatography MonoS 5/50 GL (GE HealthCare), L × I.D. 5 cm × 5 mm Ion-A: 20 mM Hepes-KOH pH 8.0, 10 % glycerol, 0,1 % NP-40 Ion-B: 20 mM Hepes-KOH pH 8.0, 2 M KCl, 10 % glycerol, 0,1 % NP-40 3. Gel filtration 16/600 Superdex 75 pg (GE HealthCare), L × I.D. 60 cm × 16 mm GF-buffer: 20 mM Hepes-KOH pH 8.0, 1 M KCl 4. His-tagYB-1 concentration Vivaspin Turbo 15 (Sartorius) 10 kDa MWCO Storage buffer: 20 mM KH2PO4, 0.5 M KCl, 20% glycerol 217 Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNA ously [9] with minor modifications. Briefly, DNA cofactor was removed by benzonase treatment and PAR was isolated from result- ing sample by phenol:chloroform:isoamyl alcohol (25:24:1) extraction. PAR was addi- tionally purified by ethanol precipitation and dissolved in 1x reaction buffer (RB) (50 mM Tris-HCl pH 8.0, 40 mM NaCl, 8 mM MgCl2, 1 mM DTT) to the final concentration 1 A260 units/ml. His-tagYB-1 interaction with PAR, DNA and RNA To study PAR ability to compete with DNA for YB-1 binding, we used unlabeled PAR and radioactively labeled DNA. Reaction mixtures contained 1x RB, 400 nM his-tagYB-1, 50 nM ssDNA or dsDNA, and 0-8 μl of PAR. To study DNA and RNA ability to compete with PAR for YB-1 binding, we used radioactively la- beled PAR and unlabeled DNA (or RNA). ssRNA used in this study was kindly provided by Dmitriy Sharifulin (ICBFM SB RAS, Novosibirsk, Russia). Reaction mixtures con- tained 1x RB, 400 nM his-tag YB-1, 1 μl of PAR and 0-10 μM DNA or RNA. His-tagYB-1 binding to DNA and PAR was performed for 5 min at 37 ○C. Samples were supplemented by loading buffer (20 mM Tris-HCl pH 8.0, 10 % glycerol, 0.025 % bromphenol blue) and analyzed by electrophoresis mobility shift as- say at 10 V/cm (PAAG contained 7 % acry la- mide, 0.09 % bis-acrylamide, 0.5x TBE buf- fer). Positions of YB-1-DNA or YB-1-PAR complexes were visualized by phosphori ma- ging with Typhoon FLA 7000 (GE Healthcare). Results and Discussion The YB-1 cDNA primary structure derived from Sanger sequencing was compared with the reference sequence of YBX1 gene coding for the YB-1 protein (NM_001082785.1). The data obtained testify that the YB-1 open rea- ding frame contains two mutations: Pro-312 → Glu-312 (codon change CCG → CAG) and Ser-313 → Arg-313 (codon change AGT → CGT) (Fig. 1). We suppose that these amino acid changes may represent previously un- documented YB-1 cDNA polymorphisms. To obtain a target expression construct that contains YB-1 cDNA, N-terminally flanked by hexahistidine coding sequence, we used ligase independent cloning system (Supplementary, Fig. S1). The conditions of cell culture trans- formed by pLATE-51-YB-1 were optimized to achieve maximal yield of the target protein Fig. 1. Comparison of YB-1 cDNA sequence with reference sequence of YBX1 gene (R) and a fragment of chromatogram obtained after Sanger sequencing. Mutated codons are boxed, nucleotide changes are rubri- cated. 218 E. E. Alemasova, K. N. Naumenko, P. E. Pestryakov et al. in soluble form. Since a single-step metal af- finity chromatography did not result in pure YB-1 preparation, two additional purification steps were performed (Fig. 2). Using this ap- proach we obtained about 3 mg of ~90 % purity his-tagYB-1 protein per 1 l of bacterial culture. Thus, the yield of the target protein obtained by our purification protocol is three times higher compared to previously reported approach [6]. Previously, YB-1 was shown to bind poly(ADP-ribose) even in the presence of da- ma ged DNA serving as a cofactor for the PARP1 activation [8]. However, the ability of PAR to compete with DNA for binding to YB-1 was not demonstrated yet. In the present study we employed an electrophoresis mobi- li ty shift assay to estimate the relative affinity of poly(ADP-ribose), DNA and RNA for his- tagYB-1 protein. First of all, we modified the protocol for PAR preparation [8] in order to eliminate DNA cofactor from the sample. Purified PAR was able to compete with single- and double-stranded DNA for binding to his- tagYB-1 (Fig. 3A). Reciprocally, ssDNA, dsDNA and RNA were shown to disrupt YB-1 complexes with PAR (Fig. 3B). Since PAR and nucleic acids can compete for YB-1, we propose that in the cellular context the YB-1 functions may be regulated by PAR/DNA and PAR/RNA ratio. In this regard, an increase of PAR level induced by genotoxic stress may dynamically outcompete DNA- and RNA- binding of YB-1 and recruit this protein to Supplementary, Figure S1. Con- struction of his-tagged YB-1 expres- sion vector (scheme). Fig. 2. Purification of his- tagged YB-1(Coomassie Brilliant Blue R-250 stai- ned gel). Lane 1 – his-tag- ged YB-1protein after pu- rification on Ni-NTA col- umn; lane 2 – after Mono S column; lane 3 – after gel-filtration (final protein sample). 219 Y-box-binding protein and its interaction with poly(ADP-ribose), RNA, single- and double-stranded DNA DNA damage sites. Such mechanism might be similar to that proposed for RNA-binding proteins [5]. Conclusions In the present work we developed a simple and efficient technique for the production and pu- rification of histidine-tagged recombinant analog of YB-1 protein from bacterial cells. We found that poly(ADP-ribose) is able to compete with DNA and RNA for binding to YB-1 protein. We propose that high PAR con- centration at the sites of genomic lesions may induce transient YB-1 relocalization from its complexes with nucleic acids to DNA damage sites. PAR-mediated recruitment of YB-1 to DNA repair foci provides a basis for YB-1 involvement in the DNA repair process. Acknowledgements This work was supported by RFBR grant 16- 54-76010; GDRI program; Russian Ministry of Science and Education under 5-100 Excellence Program; Russian State funded budget project (VI.57.1.2, 0309-2016-0001); and educational fellowship from President of Russian Federation to young scientists and PhD students to AEE. REFERENCES 1. Lyabin DN, Eliseeva IA, Ovchinnikov LP. YB-1 protein: functions and regulation. Wiley Interdiscip Rev RNA. 2014; 5(1): 95–110. 2. D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999; 342(Pt 2): 249–68. 3. Muthurajan UM, Hepler MR, Hieb AR, Clark NJ, Kramer M, Yao T, Luger K. Automodification switches PARP-1 function from chromatin architec- tural protein to histone chaperone. Proc Natl Acad Sci U S A. 2014; 111(35): 12752–57. 4. Rulten SL, Rotheray A, Green RL, Grundy GJ, Moore DA, Gómez-Herreros F, Hafezparast M, Caldecott KW. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage. Nu- cleic Acids Res. 2014; 42(1): 307–14. 5. Teloni F, Altmeyer M. Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res. 2016; 44(3): 993–1006. 6. Kretov DA, Curmi PA, Hamon L, Abrakhi S, Des- forges B, Ovchinnikov LP, Pastré D. mRNA and DNA selection via protein multimerization: YB-1 as a case study. Nucleic Acids Res. 2015; 43(19): 9457–73. 7. Studier FW. Stable expression clones and auto-in- duction for protein production in E. coli. Methods Mol Biol. 2014; 1091: 17–32. A Fig. 3A. EMSA of YB-1 binding to radioactively labelled 50 nM ssDNA (lanes 2–7) and 50 nM dsDNA (lanes 9–14) in the presence of varying amounts of poly(ADP-ribose) (0–0.008 A260 units/ml). C1 – control for ssDNA, C2 – control for dsDNA. B Fig. 3B. EMSA of YB-1 binding to radioactively labelled PAR (0.001 A260 units/ml) in the presence of ssDNA, ds- DNA and RNA (0-10 μM). 220 E. E. Alemasova, K. N. Naumenko, P. E. Pestryakov et al. 8. Alemasova EE, Moor NA, Naumenko KN, Kutu- zov MM, Sukhanova MV, Pestryakov PE, Lavrik OI. Y-box-binding protein 1 as a non-canonical factor of base excision repair. Biochim Biophys Acta. 2016; 1864(12): 1631–40. Отримання рекомбінантного аналога Y-бокс- зв’язуючого білка 1 і його взаємодію з полі (АДФ- рибозою), РНК, одно- і дволанцюговою ДНК Е. Е. Алемасова, К. Н. Науменко, П. Е. Пестряков, О. І. Лаврик Мета. Отримання рекомбінантного гістидин-міченого Y-бокс-зв’язуючий білрк 1 і дослідження його взаємо- дії з ДНК, РНК та полі (АДФ-рибозою). Методи. Безлігазне клонування, ПЛР, секвенування по Сенгеру, хроматографія, електрофорез в поліакриламідному гелі та метод затримки в гелі. Результати. кДНК YB-1 містить дві раніше недокументовані поодинокі нукле- отидні заміни. Сконструйовано вектор для експресії гистидин-міченого білка YB-1 і розроблена відповідна методика очищення білка. Методом затримки в гелі показано, що полі (АДФ-рибоза) конкурує з одно- і дволанцюговою ДНК, а також РНК, за зв›язування ре комбінантного гістидин-міченого білка YB-1. Висновки. У цій роботі ми розробили та оптимізува- ли процедуру отримання рекомбінантного білка YB-1 з бактеріальних клітин. Ми встановили, що полі (АДФ- рибоза) у високій концентрації здатна витісняти білок YB-1 з його комплексів з ДНК і РНК, що вказує на можливість участі YB-1 в репарації ДНК. К л юч ов і с л ов а: YB-1, отримання рекомбінант- ного білка, поли (АДФ-рибоза) (PAR), репарація ДНК Получение рекомбинантного аналога Y-бокс- связывающего белка 1 и его взаимодействие с поли(АДФ-рибозой), РНК, одно- и двухцепочечной ДНК Е. Э. Алемасова, К. Н. Науменко, П. Е. Пестряков, О. И. Лаврик Цель. Получение рекомбинантного гистидин-мечено- го Y-бокс-связывающего белка 1 и исследование его взаимодействий с ДНК, РНК и поли(АДФ-рибозой). Методы. Безлигазное клонирование, ПЦР, секвениро- вание по Сэнгеру, хроматография, электрофорез в полиакриламидном геле и метод задержки в геле. Результаты. кДНК YB-1 содержит две ранее недоку- ментированные одиночные нуклеотидные замены. Сконструирован вектор для экспрессии гистидин-ме- ченого белка YB-1 и разработана соответствующая методика очистки белка. Методом задержки в геле показано, что поли(АДФ-рибоза) конкурирует с одно- и двухцепочечными ДНК, а также РНК, за связывание рекомбинантного гистидин-меченого белка YB-1. Выводы. В настоящей работе мы разработали и оп- тимизировали процедуру получения рекомбинантного белка YB-1 из бактериальных клеток. Мы установили, что поли(АДФ-рибоза) в высокой концентрации спо- собна вытеснять белок YB-1 из его комплексов с ДНК и РНК, что указывает на возможность участия YB-1 в репарации ДНК. К л юч е в ы е с л ов а: YB-1, получение рекомбинант- ного белка, поли(АДФ-рибоза) (PAR), репарация ДНК Received 14.03.2017